Nuprl Lemma : bag-union-append
∀[A:Type]. ∀[b1,b2:bag(bag(A))].  (bag-union(b1 + b2) = (bag-union(b1) + bag-union(b2)) ∈ bag(A))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-append-union, 
bag-append_wf, 
bag-union_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[A:Type].  \mforall{}[b1,b2:bag(bag(A))].    (bag-union(b1  +  b2)  =  (bag-union(b1)  +  bag-union(b2)))
Date html generated:
2017_10_01-AM-08_47_01
Last ObjectModification:
2017_07_26-PM-04_31_42
Theory : bags
Home
Index