Nuprl Lemma : bag-union-append

[A:Type]. ∀[b1,b2:bag(bag(A))].  (bag-union(b1 b2) (bag-union(b1) bag-union(b2)) ∈ bag(A))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag-append: as bs bag: bag(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: all: x:A. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf bag_wf bag-append-union bag-append_wf bag-union_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality dependent_functionElimination cumulativity because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[A:Type].  \mforall{}[b1,b2:bag(bag(A))].    (bag-union(b1  +  b2)  =  (bag-union(b1)  +  bag-union(b2)))



Date html generated: 2017_10_01-AM-08_47_01
Last ObjectModification: 2017_07_26-PM-04_31_42

Theory : bags


Home Index