Nuprl Lemma : sub-bag-rep

[T:Type]. ∀x:T. ∀n,m:ℕ.  uiff(sub-bag(T;bag-rep(n;x);bag-rep(m;x));n ≤ m)


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag-rep: bag-rep(n;x) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T le: A ≤ B not: ¬A implies:  Q false: False nat: prop: subtype_rel: A ⊆B sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) subtract: m
Lemmas referenced :  less_than'_wf sub-bag_wf bag-rep_wf list-subtype-bag le_wf nat_wf equal_wf squash_wf true_wf bag-size_wf bag_wf iff_weakening_equal nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf bag-size-rep bag-size-append subtract_wf itermSubtract_wf int_term_value_subtract_lemma bag-append_wf bag-rep-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination extract_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache independent_isectElimination universeEquality imageElimination intEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination isect_memberEquality voidEquality unionElimination applyLambdaEquality dependent_pairFormation int_eqEquality computeAll dependent_set_memberEquality minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}n,m:\mBbbN{}.    uiff(sub-bag(T;bag-rep(n;x);bag-rep(m;x));n  \mleq{}  m)



Date html generated: 2017_10_01-AM-08_52_59
Last ObjectModification: 2017_07_26-PM-04_34_23

Theory : bags


Home Index