Nuprl Lemma : fps-compose-atom-eq

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)].  (atom(x)(x:=f) (f-(f[{}])*1) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-scalar-mul: (c)*f fps-sub: (f-g) fps-atom: atom(x) fps-one: 1 fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng comm: Comm(T;op) rng: Rng and: P ∧ Q cand: c∧ B prop: all: x:A. B[x] listp: List+ subtype_rel: A ⊆B so_lambda: λ2x.t[x] power-series: PowerSeries(X;r) so_apply: x[s] uiff: uiff(P;Q) fps-coeff: f[b] fps-atom: atom(x) fps-compose: g(x:=f) fps-single: <c> fps-one: 1 fps-scalar-mul: (c)*f fps-sub: (f-g) fps-neg: -(f) fps-add: (f+g) ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) squash: T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A tlp: tlp(L) hdp: hdp(L) true: True iff: ⇐⇒ Q rev_implies:  Q bag-member: x ↓∈ bs sq_stable: SqStable(P) nat: top: Top cons: [a b] bag-rep: bag-rep(n;x) ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) bag-union: bag-union(bbs) concat: concat(ll) empty-bag: {} bag-append: as bs rev_uimplies: rev_uimplies(P;Q) length: ||as|| list_ind: list_ind nil: [] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] infix_ap: y bag-product: Πx ∈ b. f[x] single-bag: {x} bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  rng_plus_comm crng_properties rng_properties rng_all_properties ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf bag-product_wf bag_wf tl_wf list-subtype-bag listp_wf fps-ext fps-compose_wf fps-atom_wf fps-sub_wf fps-scalar-mul_wf fps-coeff_wf empty-bag_wf fps-one_wf power-series_wf crng_wf deq_wf valueall-type_wf bag-summation_wf squash_wf assoc_wf comm_wf bag-eq_wf bag-append_wf hd_wf listp_properties bag-rep_wf length_wf_nat single-bag_wf bool_wf eqtt_to_assert assert-bag-eq rng_times_one eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot rng_times_zero bag-parts'_wf true_wf infix_ap_wf bag-null_wf assert-bag-null equal-wf-T-base bag-summation-filter hdp_wf tlp_wf iff_weakening_equal bag-extensionality-no-repeats bag-filter_wf ifthenelse_wf cons_wf_listp cons_wf nil_wf empty-bag-no-repeats bag-single-no-repeats bag-member_wf decidable__equal_set list_wf decidable__equal_list decidable__equal_bag decidable-equal-deq less_than_wf length_wf bag-filter-no-repeats bag-parts'-no-repeats bag-member-filter bag-append-is-single sq_stable__bag-member bag-member-parts' bag-member-single bag-size_wf nat_wf bag_size_single_lemma bag-size-rep list-cases reduce_tl_nil_lemma length_of_nil_lemma int_subtype_base product_subtype_list reduce_tl_cons_lemma reduce_hd_cons_lemma length_of_cons_lemma primrec1_lemma cons_bag_empty_lemma uiff_transitivity assert_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff assert_of_bnot non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf reduce_cons_lemma reduce_nil_lemma bag-append-is-empty l_all_iff l_member_wf cons_member bag-union_wf subtype_rel_self list_ind_nil_lemma bag-append-empty bag-subtype-list bool_cases bag-member-empty-iff empty_bag_append_lemma l_all_cons l_all_nil equal-empty-bag bag-summation-empty rng_plus_inv list_accum_cons_lemma list_accum_nil_lemma rng_minus_zero rng_plus_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_set_memberEquality productElimination independent_pairFormation lambdaFormation cumulativity because_Cache applyEquality independent_isectElimination sqequalRule lambdaEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality imageElimination productEquality functionExtensionality functionEquality dependent_functionElimination unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate independent_functionElimination voidElimination imageMemberEquality baseClosed hyp_replacement natural_numberEquality applyLambdaEquality intEquality voidEquality hypothesis_subsumption impliesFunctionality int_eqEquality computeAll setEquality inlFormation equalityUniverse levelHypothesis

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].    (atom(x)(x:=f)  =  (f-(f[\{\}])*1)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_06_07
Last ObjectModification: 2017_07_26-PM-06_34_09

Theory : power!series


Home Index