Nuprl Lemma : fps-compose-atom-eq
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)].  (atom(x)(x:=f) = (f-(f[{}])*1) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f)
, 
fps-scalar-mul: (c)*f
, 
fps-sub: (f-g)
, 
fps-atom: atom(x)
, 
fps-one: 1
, 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
empty-bag: {}
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
crng: CRng
, 
comm: Comm(T;op)
, 
rng: Rng
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
listp: A List+
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
power-series: PowerSeries(X;r)
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
fps-coeff: f[b]
, 
fps-atom: atom(x)
, 
fps-compose: g(x:=f)
, 
fps-single: <c>
, 
fps-one: 1
, 
fps-scalar-mul: (c)*f
, 
fps-sub: (f-g)
, 
fps-neg: -(f)
, 
fps-add: (f+g)
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
group_p: IsGroup(T;op;id;inv)
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
tlp: tlp(L)
, 
hdp: hdp(L)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bag-member: x ↓∈ bs
, 
sq_stable: SqStable(P)
, 
nat: ℕ
, 
top: Top
, 
cons: [a / b]
, 
bag-rep: bag-rep(n;x)
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
empty-bag: {}
, 
bag-append: as + bs
, 
rev_uimplies: rev_uimplies(P;Q)
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
infix_ap: x f y
, 
bag-product: Πx ∈ b. f[x]
, 
single-bag: {x}
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
rng_plus_comm, 
crng_properties, 
rng_properties, 
rng_all_properties, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
bag-product_wf, 
bag_wf, 
tl_wf, 
list-subtype-bag, 
listp_wf, 
fps-ext, 
fps-compose_wf, 
fps-atom_wf, 
fps-sub_wf, 
fps-scalar-mul_wf, 
fps-coeff_wf, 
empty-bag_wf, 
fps-one_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
bag-summation_wf, 
squash_wf, 
assoc_wf, 
comm_wf, 
bag-eq_wf, 
bag-append_wf, 
hd_wf, 
listp_properties, 
bag-rep_wf, 
length_wf_nat, 
single-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-eq, 
rng_times_one, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
rng_times_zero, 
bag-parts'_wf, 
true_wf, 
infix_ap_wf, 
bag-null_wf, 
assert-bag-null, 
equal-wf-T-base, 
bag-summation-filter, 
hdp_wf, 
tlp_wf, 
iff_weakening_equal, 
bag-extensionality-no-repeats, 
bag-filter_wf, 
ifthenelse_wf, 
cons_wf_listp, 
cons_wf, 
nil_wf, 
empty-bag-no-repeats, 
bag-single-no-repeats, 
bag-member_wf, 
decidable__equal_set, 
list_wf, 
decidable__equal_list, 
decidable__equal_bag, 
decidable-equal-deq, 
less_than_wf, 
length_wf, 
bag-filter-no-repeats, 
bag-parts'-no-repeats, 
bag-member-filter, 
bag-append-is-single, 
sq_stable__bag-member, 
bag-member-parts', 
bag-member-single, 
bag-size_wf, 
nat_wf, 
bag_size_single_lemma, 
bag-size-rep, 
list-cases, 
reduce_tl_nil_lemma, 
length_of_nil_lemma, 
int_subtype_base, 
product_subtype_list, 
reduce_tl_cons_lemma, 
reduce_hd_cons_lemma, 
length_of_cons_lemma, 
primrec1_lemma, 
cons_bag_empty_lemma, 
uiff_transitivity, 
assert_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
reduce_cons_lemma, 
reduce_nil_lemma, 
bag-append-is-empty, 
l_all_iff, 
l_member_wf, 
cons_member, 
bag-union_wf, 
subtype_rel_self, 
list_ind_nil_lemma, 
bag-append-empty, 
bag-subtype-list, 
bool_cases, 
bag-member-empty-iff, 
empty_bag_append_lemma, 
l_all_cons, 
l_all_nil, 
equal-empty-bag, 
bag-summation-empty, 
rng_plus_inv, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
rng_minus_zero, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
cumulativity, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageElimination, 
productEquality, 
functionExtensionality, 
functionEquality, 
dependent_functionElimination, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
natural_numberEquality, 
applyLambdaEquality, 
intEquality, 
voidEquality, 
hypothesis_subsumption, 
impliesFunctionality, 
int_eqEquality, 
computeAll, 
setEquality, 
inlFormation, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].    (atom(x)(x:=f)  =  (f-(f[\{\}])*1)) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_06_07
Last ObjectModification:
2017_07_26-PM-06_34_09
Theory : power!series
Home
Index