Nuprl Lemma : fps-compose-one
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)].  (1(x:=f) = 1 ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f)
, 
fps-one: 1
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fps-one: 1
, 
fps-compose: g(x:=f)
, 
power-series: PowerSeries(X;r)
, 
fps-coeff: f[b]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
bag-product: Πx ∈ b. f[x]
, 
infix_ap: x f y
, 
empty-bag: {}
, 
bag-parts': bag-parts'(eq;bs;x)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-null: bag-null(bs)
, 
null: null(as)
, 
nil: []
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
bag-parts: bag-parts(eq;bs)
, 
bag-partitions: bag-partitions(eq;bs)
, 
bag-splits: bag-splits(b)
, 
list_ind: list_ind, 
single-bag: {x}
, 
cons: [a / b]
, 
bag-to-set: bag-to-set(eq;bs)
, 
bag-remove-repeats: bag-remove-repeats(eq;bs)
, 
list-to-set: list-to-set(eq;L)
, 
l-union: as ⋃ bs
, 
reduce: reduce(f;k;as)
, 
insert: insert(a;L)
, 
eval_list: eval_list(t)
, 
deq-member: x ∈b L
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
bag-map: bag-map(f;bs)
, 
map: map(f;as)
, 
append: as @ bs
, 
pi1: fst(t)
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bag-append: as + bs
, 
hd: hd(l)
, 
bag-rep: bag-rep(n;x)
, 
primrec: primrec(n;b;c)
, 
length: ||as||
, 
tl: tl(l)
, 
pi2: snd(t)
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
listp: A List+
, 
so_apply: x[s]
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
group_p: IsGroup(T;op;id;inv)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
less_than': less_than'(a;b)
, 
nat: ℕ
Lemmas referenced : 
bag-null_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
bag_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
equal-empty-bag, 
rng_car_wf, 
rng_plus_wf, 
rng_one_wf, 
rng_zero_wf, 
list_accum_cons_lemma, 
reduce_tl_cons_lemma, 
list_accum_nil_lemma, 
squash_wf, 
true_wf, 
rng_times_one, 
rng_plus_zero, 
iff_weakening_equal, 
crng_properties, 
rng_all_properties, 
rng_properties, 
rng_plus_comm2, 
bag-summation-is-zero, 
listp_wf, 
bag-parts'_wf, 
infix_ap_wf, 
rng_times_wf, 
bag-append_wf, 
hd_wf, 
listp_properties, 
bag-rep_wf, 
length_wf_nat, 
tl_wf, 
list-subtype-bag, 
bag-product_wf, 
subtype_rel_self, 
bag-member_wf, 
rng_times_zero, 
bag-member-parts', 
decidable__lt, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
less_than_wf, 
list-cases, 
product_subtype_list, 
reduce_hd_cons_lemma, 
bag-append-comm, 
length_of_nil_lemma, 
length_of_cons_lemma, 
primrec0_lemma, 
empty_bag_append_lemma, 
empty-bag_wf, 
bag-union_wf, 
cons_wf, 
nil_wf, 
bag-size_wf, 
bag-size-append, 
bag-size-rep, 
decidable__le, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
le_wf, 
bag_size_empty_lemma, 
non_neg_length, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
setElimination, 
rename, 
natural_numberEquality, 
callbyvalueReduce, 
sqleReflexivity, 
voidEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
independent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
hyp_replacement, 
applyLambdaEquality, 
addEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].    (1(x:=f)  =  1) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_59_53
Last ObjectModification:
2017_07_26-PM-06_34_05
Theory : power!series
Home
Index