Nuprl Lemma : fps-compose-one
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)].  (1(x:=f) = 1 ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f), 
fps-one: 1, 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fps-one: 1, 
fps-compose: g(x:=f), 
power-series: PowerSeries(X;r), 
fps-coeff: f[b], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
crng: CRng, 
rng: Rng, 
true: True, 
bag-product: Πx ∈ b. f[x], 
infix_ap: x f y, 
empty-bag: {}, 
bag-parts': bag-parts'(eq;bs;x), 
bag-summation: Σ(x∈b). f[x], 
bag-null: bag-null(bs), 
null: null(as), 
nil: [], 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bag-parts: bag-parts(eq;bs), 
bag-partitions: bag-partitions(eq;bs), 
bag-splits: bag-splits(b), 
list_ind: list_ind, 
single-bag: {x}, 
cons: [a / b], 
bag-to-set: bag-to-set(eq;bs), 
bag-remove-repeats: bag-remove-repeats(eq;bs), 
list-to-set: list-to-set(eq;L), 
l-union: as ⋃ bs, 
reduce: reduce(f;k;as), 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
bag-combine: ⋃x∈bs.f[x], 
bag-union: bag-union(bbs), 
concat: concat(ll), 
bag-map: bag-map(f;bs), 
map: map(f;as), 
append: as @ bs, 
pi1: fst(t), 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bag-append: as + bs, 
hd: hd(l), 
bag-rep: bag-rep(n;x), 
primrec: primrec(n;b;c), 
length: ||as||, 
tl: tl(l), 
pi2: snd(t), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
listp: A List+, 
so_apply: x[s], 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
ge: i ≥ j , 
decidable: Dec(P), 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
less_than': less_than'(a;b), 
nat: ℕ
Lemmas referenced : 
bag-null_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
bag_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
equal-empty-bag, 
rng_car_wf, 
rng_plus_wf, 
rng_one_wf, 
rng_zero_wf, 
list_accum_cons_lemma, 
reduce_tl_cons_lemma, 
list_accum_nil_lemma, 
squash_wf, 
true_wf, 
rng_times_one, 
rng_plus_zero, 
iff_weakening_equal, 
crng_properties, 
rng_all_properties, 
rng_properties, 
rng_plus_comm2, 
bag-summation-is-zero, 
listp_wf, 
bag-parts'_wf, 
infix_ap_wf, 
rng_times_wf, 
bag-append_wf, 
hd_wf, 
listp_properties, 
bag-rep_wf, 
length_wf_nat, 
tl_wf, 
list-subtype-bag, 
bag-product_wf, 
subtype_rel_self, 
bag-member_wf, 
rng_times_zero, 
bag-member-parts', 
decidable__lt, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
less_than_wf, 
list-cases, 
product_subtype_list, 
reduce_hd_cons_lemma, 
bag-append-comm, 
length_of_nil_lemma, 
length_of_cons_lemma, 
primrec0_lemma, 
empty_bag_append_lemma, 
empty-bag_wf, 
bag-union_wf, 
cons_wf, 
nil_wf, 
bag-size_wf, 
bag-size-append, 
bag-size-rep, 
decidable__le, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
le_wf, 
bag_size_empty_lemma, 
non_neg_length, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
setElimination, 
rename, 
natural_numberEquality, 
callbyvalueReduce, 
sqleReflexivity, 
voidEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
independent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
hyp_replacement, 
applyLambdaEquality, 
addEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].    (1(x:=f)  =  1) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_59_53
Last ObjectModification:
2017_07_26-PM-06_34_05
Theory : power!series
Home
Index