Nuprl Lemma : fps-compose-one

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)].  (1(x:=f) 1 ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-one: 1 power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-one: 1 fps-compose: g(x:=f) power-series: PowerSeries(X;r) fps-coeff: f[b] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A crng: CRng rng: Rng true: True bag-product: Πx ∈ b. f[x] infix_ap: y empty-bag: {} bag-parts': bag-parts'(eq;bs;x) bag-summation: Σ(x∈b). f[x] bag-null: bag-null(bs) null: null(as) nil: [] callbyvalueall: callbyvalueall evalall: evalall(t) bag-parts: bag-parts(eq;bs) bag-partitions: bag-partitions(eq;bs) bag-splits: bag-splits(b) list_ind: list_ind single-bag: {x} cons: [a b] bag-to-set: bag-to-set(eq;bs) bag-remove-repeats: bag-remove-repeats(eq;bs) list-to-set: list-to-set(eq;L) l-union: as ⋃ bs reduce: reduce(f;k;as) insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L bag-combine: x∈bs.f[x] bag-union: bag-union(bbs) concat: concat(ll) bag-map: bag-map(f;bs) map: map(f;as) append: as bs pi1: fst(t) bag-accum: bag-accum(v,x.f[v; x];init;bs) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bag-append: as bs hd: hd(l) bag-rep: bag-rep(n;x) primrec: primrec(n;b;c) length: ||as|| tl: tl(l) pi2: snd(t) squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B so_lambda: λ2x.t[x] listp: List+ so_apply: x[s] ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) ge: i ≥  decidable: Dec(P) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) less_than': less_than'(a;b) nat:
Lemmas referenced :  bag-null_wf bool_wf eqtt_to_assert assert-bag-null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base bag_wf power-series_wf crng_wf deq_wf valueall-type_wf equal-empty-bag rng_car_wf rng_plus_wf rng_one_wf rng_zero_wf list_accum_cons_lemma reduce_tl_cons_lemma list_accum_nil_lemma squash_wf true_wf rng_times_one rng_plus_zero iff_weakening_equal crng_properties rng_all_properties rng_properties rng_plus_comm2 bag-summation-is-zero listp_wf bag-parts'_wf infix_ap_wf rng_times_wf bag-append_wf hd_wf listp_properties bag-rep_wf length_wf_nat tl_wf list-subtype-bag bag-product_wf subtype_rel_self bag-member_wf rng_times_zero bag-member-parts' decidable__lt length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf less_than_wf list-cases product_subtype_list reduce_hd_cons_lemma bag-append-comm length_of_nil_lemma length_of_cons_lemma primrec0_lemma empty_bag_append_lemma empty-bag_wf bag-union_wf cons_wf nil_wf bag-size_wf bag-size-append bag-size-rep decidable__le add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf le_wf bag_size_empty_lemma non_neg_length nat_properties intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution dependent_functionElimination thin cumulativity hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination isectElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_pairFormation promote_hyp instantiate independent_functionElimination voidElimination baseClosed isect_memberEquality axiomEquality universeEquality setElimination rename natural_numberEquality callbyvalueReduce sqleReflexivity voidEquality applyEquality imageElimination imageMemberEquality independent_pairFormation int_eqEquality intEquality computeAll dependent_set_memberEquality hypothesis_subsumption hyp_replacement applyLambdaEquality addEquality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].    (1(x:=f)  =  1) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_59_53
Last ObjectModification: 2017_07_26-PM-06_34_05

Theory : power!series


Home Index