Nuprl Lemma : fps-mul-single

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[b,c:bag(X)].  ((<b>*<c>= <c> ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) fps-single: <c> power-series: PowerSeries(X;r) bag-append: as bs bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q power-series: PowerSeries(X;r) all: x:A. B[x] crng: CRng rng: Rng uiff: uiff(P;Q) fps-single: <c> fps-coeff: f[b] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf power-series_wf fps-mul-single-general fps-single_wf bag-append_wf subtype_rel_self iff_weakening_equal fps-ext bag-diff_wf bag_wf unit_wf2 fps-coeff_wf rng_zero_wf rng_car_wf crng_wf deq_wf valueall-type_wf bag-diff-property bag-eq_wf bool_wf eqtt_to_assert assert-bag-eq rng_one_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot and_wf all_wf not_wf bag-append-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache independent_isectElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate productElimination independent_functionElimination unionEquality lambdaFormation unionElimination setElimination rename dependent_functionElimination functionEquality isect_memberEquality axiomEquality universeEquality equalityElimination dependent_pairFormation promote_hyp voidElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[b,c:bag(X)].    ((<b>*<c>)  =  <b  +  c>)  supposing  valueall-type(X)



Date html generated: 2019_10_16-AM-11_34_33
Last ObjectModification: 2018_08_21-PM-01_59_48

Theory : power!series


Home Index