Step
*
1
of Lemma
fps-compose-mul
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. x : X
6. g : PowerSeries(X;r)
7. f : PowerSeries(X;r)
8. h : PowerSeries(X;r)
9. ∀L:bag(X) List+. (||L|| ≥ 1 )
10. Assoc(|r|;+r)
11. IsMonoid(|r|;+r;0)
12. Comm(|r|;+r)
13. Comm(|r|;*)
14. Assoc(|r|;*)
15. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
16. b : bag(X)
⊢ Σ(p∈⋃L∈bag-parts'(eq;b;x).bag-map(λp.<L, p>bag-partitions(eq;hd(L) + bag-rep(||tl(L)||;x)))). (* (g (fst(snd(p)))) 
                                                                                                  (h (snd(snd(p))))) 
                                                                                                 * 
                                                                                                 Πa ∈ tl(fst(p)). f a
= Σ(p∈⋃p∈bag-partitions(eq;b).bag-map(λp1.<p, p1>bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x)))
   ((g (hd(fst(snd(p))) + bag-rep(||tl(fst(snd(p)))||;x))) * Πa ∈ tl(fst(snd(p))). f a) 
   * 
   ((h (hd(snd(snd(p))) + bag-rep(||tl(snd(snd(p)))||;x))) * Πa ∈ tl(snd(snd(p))). f a)
∈ |r|
BY
{ TACTIC:Assert ⌜Σ(p∈⋃p∈bag-partitions(eq;b).bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x))
                  ((g (hd(fst(p)) + bag-rep(||tl(fst(p))||;x))) * Πa ∈ tl(fst(p)). f a) 
                  * 
                  ((h (hd(snd(p)) + bag-rep(||tl(snd(p))||;x))) * Πa ∈ tl(snd(p)). f a)
                 = Σ(p∈⋃p∈bag-partitions(eq;b).bag-map(λp1.<p, p1>bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x)))
                    ((g (hd(fst(snd(p))) + bag-rep(||tl(fst(snd(p)))||;x))) * Πa ∈ tl(fst(snd(p))). f a) 
                    * 
                    ((h (hd(snd(snd(p))) + bag-rep(||tl(snd(snd(p)))||;x))) * Πa ∈ tl(snd(snd(p))). f a)
                 ∈ |r|⌝⋅ }
1
.....assertion..... 
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. x : X
6. g : PowerSeries(X;r)
7. f : PowerSeries(X;r)
8. h : PowerSeries(X;r)
9. ∀L:bag(X) List+. (||L|| ≥ 1 )
10. Assoc(|r|;+r)
11. IsMonoid(|r|;+r;0)
12. Comm(|r|;+r)
13. Comm(|r|;*)
14. Assoc(|r|;*)
15. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
16. b : bag(X)
⊢ Σ(p∈⋃p∈bag-partitions(eq;b).bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x)). ((g 
                                                                                    (hd(fst(p))
                                                                                    + bag-rep(||tl(fst(p))||;x))) 
                                                                                   * 
                                                                                   Πa ∈ tl(fst(p)). f a) 
                                                                                  * 
                                                                                  ((h 
                                                                                    (hd(snd(p))
                                                                                    + bag-rep(||tl(snd(p))||;x))) 
                                                                                   * 
                                                                                   Πa ∈ tl(snd(p)). f a)
= Σ(p∈⋃p∈bag-partitions(eq;b).bag-map(λp1.<p, p1>bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x)))
   ((g (hd(fst(snd(p))) + bag-rep(||tl(fst(snd(p)))||;x))) * Πa ∈ tl(fst(snd(p))). f a) 
   * 
   ((h (hd(snd(snd(p))) + bag-rep(||tl(snd(snd(p)))||;x))) * Πa ∈ tl(snd(snd(p))). f a)
∈ |r|
2
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. x : X
6. g : PowerSeries(X;r)
7. f : PowerSeries(X;r)
8. h : PowerSeries(X;r)
9. ∀L:bag(X) List+. (||L|| ≥ 1 )
10. Assoc(|r|;+r)
11. IsMonoid(|r|;+r;0)
12. Comm(|r|;+r)
13. Comm(|r|;*)
14. Assoc(|r|;*)
15. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
16. b : bag(X)
17. Σ(p∈⋃p∈bag-partitions(eq;b).bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x)). ((g 
                                                                                      (hd(fst(p))
                                                                                      + bag-rep(||tl(fst(p))||;x))) 
                                                                                     * 
                                                                                     Πa ∈ tl(fst(p)). f a) 
                                                                                    * 
                                                                                    ((h 
                                                                                      (hd(snd(p))
                                                                                      + bag-rep(||tl(snd(p))||;x))) 
                                                                                     * 
                                                                                     Πa ∈ tl(snd(p)). f a)
= Σ(p∈⋃p∈bag-partitions(eq;b).bag-map(λp1.<p, p1>bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x)))
   ((g (hd(fst(snd(p))) + bag-rep(||tl(fst(snd(p)))||;x))) * Πa ∈ tl(fst(snd(p))). f a) 
   * 
   ((h (hd(snd(snd(p))) + bag-rep(||tl(snd(snd(p)))||;x))) * Πa ∈ tl(snd(snd(p))). f a)
∈ |r|
⊢ Σ(p∈⋃L∈bag-parts'(eq;b;x).bag-map(λp.<L, p>bag-partitions(eq;hd(L) + bag-rep(||tl(L)||;x)))). (* (g (fst(snd(p)))) 
                                                                                                  (h (snd(snd(p))))) 
                                                                                                 * 
                                                                                                 Πa ∈ tl(fst(p)). f a
= Σ(p∈⋃p∈bag-partitions(eq;b).bag-map(λp1.<p, p1>bag-parts'(eq;fst(p);x) × bag-parts'(eq;snd(p);x)))
   ((g (hd(fst(snd(p))) + bag-rep(||tl(fst(snd(p)))||;x))) * Πa ∈ tl(fst(snd(p))). f a) 
   * 
   ((h (hd(snd(snd(p))) + bag-rep(||tl(snd(snd(p)))||;x))) * Πa ∈ tl(snd(snd(p))). f a)
∈ |r|
Latex:
Latex:
1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  x  :  X
6.  g  :  PowerSeries(X;r)
7.  f  :  PowerSeries(X;r)
8.  h  :  PowerSeries(X;r)
9.  \mforall{}L:bag(X)  List\msupplus{}.  (||L||  \mgeq{}  1  )
10.  Assoc(|r|;+r)
11.  IsMonoid(|r|;+r;0)
12.  Comm(|r|;+r)
13.  Comm(|r|;*)
14.  Assoc(|r|;*)
15.  \mforall{}L:bag(X)  List\msupplus{}.  (\mPi{}a  \mmember{}  tl(L).  f  a  \mmember{}  |r|)
16.  b  :  bag(X)
\mvdash{}  \mSigma{}(p\mmember{}\mcup{}L\mmember{}bag-parts'(eq;b;x).bag-map(\mlambda{}p.<L,  p>bag-partitions(eq;hd(L)  +  bag-rep(||tl(L)||;x))))
      (*  (g  (fst(snd(p))))  (h  (snd(snd(p)))))  *  \mPi{}a  \mmember{}  tl(fst(p)).  f  a
=  \mSigma{}(p\mmember{}\mcup{}p\mmember{}bag-partitions(eq;b).
            bag-map(\mlambda{}p1.<p,  p1>bag-parts'(eq;fst(p);x)  \mtimes{}  bag-parts'(eq;snd(p);x)))
      ((g  (hd(fst(snd(p)))  +  bag-rep(||tl(fst(snd(p)))||;x)))  *  \mPi{}a  \mmember{}  tl(fst(snd(p))).  f  a) 
      * 
      ((h  (hd(snd(snd(p)))  +  bag-rep(||tl(snd(snd(p)))||;x)))  *  \mPi{}a  \mmember{}  tl(snd(snd(p))).  f  a)
By
Latex:
TACTIC:Assert  \mkleeneopen{}\mSigma{}(p\mmember{}\mcup{}p\mmember{}bag-partitions(eq;b).bag-parts'(eq;fst(p);x)  \mtimes{}  bag-parts'(eq;snd(p);x))
                                ((g  (hd(fst(p))  +  bag-rep(||tl(fst(p))||;x)))  *  \mPi{}a  \mmember{}  tl(fst(p)).  f  a) 
                                * 
                                ((h  (hd(snd(p))  +  bag-rep(||tl(snd(p))||;x)))  *  \mPi{}a  \mmember{}  tl(snd(p)).  f  a)
                              =  \mSigma{}(p\mmember{}\mcup{}p\mmember{}bag-partitions(eq;b).
                                          bag-map(\mlambda{}p1.<p,  p1>bag-parts'(eq;fst(p);x)  \mtimes{}  bag-parts'(eq;snd(p);x)))
                                    ((g  (hd(fst(snd(p)))  +  bag-rep(||tl(fst(snd(p)))||;x))) 
                                      * 
                                      \mPi{}a  \mmember{}  tl(fst(snd(p))).  f  a) 
                                    * 
                                    ((h  (hd(snd(snd(p)))  +  bag-rep(||tl(snd(snd(p)))||;x))) 
                                      * 
                                      \mPi{}a  \mmember{}  tl(snd(snd(p))).  f  a)\mkleeneclose{}\mcdot{}
Home
Index