Step
*
of Lemma
fps-exp-add
No Annotations
∀[X:Type]
∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[n,m:ℕ]. ∀[f:PowerSeries(X;r)]. ((f)^(n + m) = ((f)^(n)*(f)^(m)) ∈ PowerSeries(X;r))
supposing valueall-type(X)
BY
{ (InductionOnNat THEN Auto) }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. n : ℤ
6. m : ℕ
7. f : PowerSeries(X;r)
⊢ (f)^(0 + m) = ((f)^(0)*(f)^(m)) ∈ PowerSeries(X;r)
2
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. n : ℤ
6. 0 < n
7. ∀[m:ℕ]. ∀[f:PowerSeries(X;r)]. ((f)^((n - 1) + m) = ((f)^(n - 1)*(f)^(m)) ∈ PowerSeries(X;r))
8. m : ℕ
9. f : PowerSeries(X;r)
⊢ (f)^(n + m) = ((f)^(n)*(f)^(m)) ∈ PowerSeries(X;r)
Latex:
Latex:
No Annotations
\mforall{}[X:Type]
\mforall{}[eq:EqDecider(X)]. \mforall{}[r:CRng]. \mforall{}[n,m:\mBbbN{}]. \mforall{}[f:PowerSeries(X;r)].
((f)\^{}(n + m) = ((f)\^{}(n)*(f)\^{}(m)))
supposing valueall-type(X)
By
Latex:
(InductionOnNat THEN Auto)
Home
Index