Nuprl Lemma : fps-exp-add

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[n,m:ℕ]. ∀[f:PowerSeries(X;r)].  ((f)^(n m) ((f)^(n)*(f)^(m)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-exp: (f)^(n) fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) nat: valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] add: m universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than power-series_wf subtract-1-ge-0 istype-nat crng_wf deq_wf valueall-type_wf istype-universe fps-exp_wf decidable__le intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma istype-le equal_wf mul_one_fps iff_weakening_equal squash_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma true_wf fps-mul_wf fps-exp-zero subtype_rel_self fps-exp-unroll decidable__lt subtract_wf itermSubtract_wf int_term_value_subtract_lemma general_arith_equation1 fps-mul-assoc fps-mul-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies because_Cache instantiate universeEquality dependent_set_memberEquality_alt addEquality unionElimination applyEquality imageElimination productElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:PowerSeries(X;r)].
        ((f)\^{}(n  +  m)  =  ((f)\^{}(n)*(f)\^{}(m))) 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_05_49
Last ObjectModification: 2020_01_01-AM-11_52_10

Theory : power!series


Home Index