Nuprl Lemma : fps-exp-zero
∀[X:Type]
∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ((f)^(0) = 1 ∈ PowerSeries(X;r)) supposing valueall-type(X)
Proof
Definitions occuring in Statement :
fps-exp: (f)^(n)
,
fps-one: 1
,
power-series: PowerSeries(X;r)
,
deq: EqDecider(T)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
fps-rng: fps-rng(r)
,
rng_car: |r|
,
pi1: fst(t)
,
rng_one: 1
,
pi2: snd(t)
,
fps-exp: (f)^(n)
Lemmas referenced :
rng_nexp_zero,
fps-rng_wf,
crng_subtype_rng,
crng_wf,
deq_wf,
valueall-type_wf,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_isectElimination,
hypothesis,
applyEquality,
sqequalRule,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
inhabitedIsType,
universeIsType,
instantiate,
universeEquality
Latex:
\mforall{}[X:Type]
\mforall{}[eq:EqDecider(X)]. \mforall{}[r:CRng]. \mforall{}[f:PowerSeries(X;r)]. ((f)\^{}(0) = 1) supposing valueall-type(X)
Date html generated:
2020_05_20-AM-09_05_43
Last ObjectModification:
2020_01_25-AM-11_14_49
Theory : power!series
Home
Index