Nuprl Lemma : fps-exp_wf
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[n:ℕ].  ((f)^(n) ∈ PowerSeries(X;r)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-exp: (f)^(n)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fps-exp: (f)^(n)
, 
subtype_rel: A ⊆r B
, 
crng: CRng
, 
fps-rng: fps-rng(r)
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng: Rng
Lemmas referenced : 
rng_nexp_wf, 
fps-rng_wf, 
crng_wf, 
rng_car_wf, 
nat_wf, 
power-series_wf, 
deq_wf, 
valueall-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[n:\mBbbN{}].    ((f)\^{}(n)  \mmember{}  PowerSeries(X;r)) 
    supposing  valueall-type(X)
Date html generated:
2016_05_15-PM-09_52_15
Last ObjectModification:
2015_12_27-PM-04_38_23
Theory : power!series
Home
Index