Nuprl Lemma : fps-exp_wf

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[n:ℕ].  ((f)^(n) ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-exp: (f)^(n) power-series: PowerSeries(X;r) deq: EqDecider(T) nat: valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-exp: (f)^(n) subtype_rel: A ⊆B crng: CRng fps-rng: fps-rng(r) rng_car: |r| pi1: fst(t) rng: Rng
Lemmas referenced :  rng_nexp_wf fps-rng_wf crng_wf rng_car_wf nat_wf power-series_wf deq_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality lambdaEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[n:\mBbbN{}].    ((f)\^{}(n)  \mmember{}  PowerSeries(X;r)) 
    supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_52_15
Last ObjectModification: 2015_12_27-PM-04_38_23

Theory : power!series


Home Index