Step
*
1
1
1
1
of Lemma
fps-mul-coeff-bag-rep-simple
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : ℕ
5. k : ℕn + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. ∀i:ℕn + 1. ((¬(i = k ∈ ℤ))
⇒ (f[bag-rep(i;x)] = 0 ∈ |r|))
11. x1 : bag(X)
12. x2 : bag(X)
13. n = (#(x1) + #(x2)) ∈ ℤ
14. x1 = bag-rep(#(x1);x) ∈ bag(X)
15. x2 = bag-rep(#(x2);x) ∈ bag(X)
⊢ (<x1, x2> = <bag-rep(k;x), bag-rep(n - k;x)> ∈ (bag(X) × bag(X))) ∨ ((* f[fst(<x1, x2>)] g[snd(<x1, x2>)]) = 0 ∈ |r|)
BY
{ xxx(Reduce 0 THEN Decide ⌜#(x1) = k ∈ ℤ⌝⋅ THEN Auto)xxx }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : ℕ
5. k : ℕn + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. ∀i:ℕn + 1. ((¬(i = k ∈ ℤ))
⇒ (f[bag-rep(i;x)] = 0 ∈ |r|))
11. x1 : bag(X)
12. x2 : bag(X)
13. n = (#(x1) + #(x2)) ∈ ℤ
14. x1 = bag-rep(#(x1);x) ∈ bag(X)
15. x2 = bag-rep(#(x2);x) ∈ bag(X)
16. #(x1) = k ∈ ℤ
⊢ (<x1, x2> = <bag-rep(k;x), bag-rep(n - k;x)> ∈ (bag(X) × bag(X))) ∨ ((* f[x1] g[x2]) = 0 ∈ |r|)
2
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : ℕ
5. k : ℕn + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. ∀i:ℕn + 1. ((¬(i = k ∈ ℤ))
⇒ (f[bag-rep(i;x)] = 0 ∈ |r|))
11. x1 : bag(X)
12. x2 : bag(X)
13. n = (#(x1) + #(x2)) ∈ ℤ
14. x1 = bag-rep(#(x1);x) ∈ bag(X)
15. x2 = bag-rep(#(x2);x) ∈ bag(X)
16. ¬(#(x1) = k ∈ ℤ)
⊢ (<x1, x2> = <bag-rep(k;x), bag-rep(n - k;x)> ∈ (bag(X) × bag(X))) ∨ ((* f[x1] g[x2]) = 0 ∈ |r|)
Latex:
Latex:
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : \mBbbN{}
5. k : \mBbbN{}n + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. \mforall{}i:\mBbbN{}n + 1. ((\mneg{}(i = k)) {}\mRightarrow{} (f[bag-rep(i;x)] = 0))
11. x1 : bag(X)
12. x2 : bag(X)
13. n = (\#(x1) + \#(x2))
14. x1 = bag-rep(\#(x1);x)
15. x2 = bag-rep(\#(x2);x)
\mvdash{} (<x1, x2> = <bag-rep(k;x), bag-rep(n - k;x)>) \mvee{} ((* f[fst(<x1, x2>)] g[snd(<x1, x2>)]) = 0)
By
Latex:
xxx(Reduce 0 THEN Decide \mkleeneopen{}\#(x1) = k\mkleeneclose{}\mcdot{} THEN Auto)xxx
Home
Index