Nuprl Lemma : fps-mul-coeff-bag-rep-simple

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[n:ℕ]. ∀[k:ℕ1]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X].
    (f*g)[bag-rep(n;x)] (* f[bag-rep(k;x)] g[bag-rep(n k;x)]) ∈ |r| 
    supposing ∀i:ℕ1. ((¬(i k ∈ ℤ))  (f[bag-rep(i;x)] 0 ∈ |r|)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) fps-coeff: f[b] power-series: PowerSeries(X;r) bag-rep: bag-rep(n;x) deq: EqDecider(T) int_seg: {i..j-} nat: valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q apply: a subtract: m add: m natural_number: $n int: universe: Type equal: t ∈ T crng: CRng rng_times: * rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-coeff: f[b] fps-mul: (f*g) crng: CRng rng: Rng subtype_rel: A ⊆B so_lambda: λ2x.t[x] top: Top so_apply: x[s] and: P ∧ Q cand: c∧ B monoid_p: IsMonoid(T;op;id) all: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] uiff: uiff(P;Q) pi1: fst(t) pi2: snd(t) squash: T label: ...$L... t true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) infix_ap: y rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  bag-summation-single-non-zero-no-repeats bag_wf rng_car_wf product-deq_wf bag-deq_wf rng_plus_wf rng_zero_wf bag-partitions_wf bag-rep_wf list-subtype-bag rng_times_wf fps-coeff_wf pi1_wf_top pi2_wf rng_all_properties rng_plus_comm2 int_seg_subtype_nat false_wf subtract_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf le_wf bag-member_wf all_wf int_seg_wf not_wf equal_wf power-series_wf crng_wf nat_wf deq_wf valueall-type_wf bag-member-partitions bag-append-equal-bag-rep decidable__equal_int bag-size_wf squash_wf true_wf intformeq_wf int_formula_prop_eq_lemma iff_weakening_equal subtype_base_sq int_subtype_base add-is-int-iff decidable__lt lelt_wf and_wf rng_times_zero no-repeats-bag-partitions bag-size-rep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality cumulativity hypothesisEquality hypothesis setElimination rename because_Cache independent_isectElimination applyEquality lambdaEquality productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality independent_pairFormation dependent_functionElimination natural_numberEquality addEquality lambdaFormation dependent_set_memberEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll functionEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality inlFormation imageElimination imageMemberEquality baseClosed independent_functionElimination instantiate pointwiseFunctionality promote_hyp baseApply closedConclusion inrFormation hyp_replacement applyLambdaEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}n  +  1].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].
        (f*g)[bag-rep(n;x)]  =  (*  f[bag-rep(k;x)]  g[bag-rep(n  -  k;x)]) 
        supposing  \mforall{}i:\mBbbN{}n  +  1.  ((\mneg{}(i  =  k))  {}\mRightarrow{}  (f[bag-rep(i;x)]  =  0)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_54_53
Last ObjectModification: 2017_07_26-PM-06_32_34

Theory : power!series


Home Index