Nuprl Lemma : fps-mul-coeff-bag-rep-simple
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[n:ℕ]. ∀[k:ℕn + 1]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X].
    (f*g)[bag-rep(n;x)] = (* f[bag-rep(k;x)] g[bag-rep(n - k;x)]) ∈ |r| 
    supposing ∀i:ℕn + 1. ((¬(i = k ∈ ℤ)) ⇒ (f[bag-rep(i;x)] = 0 ∈ |r|)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-mul: (f*g), 
fps-coeff: f[b], 
power-series: PowerSeries(X;r), 
bag-rep: bag-rep(n;x), 
deq: EqDecider(T), 
int_seg: {i..j-}, 
nat: ℕ, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
apply: f a, 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_times: *, 
rng_zero: 0, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fps-coeff: f[b], 
fps-mul: (f*g), 
crng: CRng, 
rng: Rng, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
and: P ∧ Q, 
cand: A c∧ B, 
monoid_p: IsMonoid(T;op;id), 
all: ∀x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
int_seg: {i..j-}, 
guard: {T}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
pi1: fst(t), 
pi2: snd(t), 
squash: ↓T, 
label: ...$L... t, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
infix_ap: x f y, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
bag-summation-single-non-zero-no-repeats, 
bag_wf, 
rng_car_wf, 
product-deq_wf, 
bag-deq_wf, 
rng_plus_wf, 
rng_zero_wf, 
bag-partitions_wf, 
bag-rep_wf, 
list-subtype-bag, 
rng_times_wf, 
fps-coeff_wf, 
pi1_wf_top, 
pi2_wf, 
rng_all_properties, 
rng_plus_comm2, 
int_seg_subtype_nat, 
false_wf, 
subtract_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_wf, 
bag-member_wf, 
all_wf, 
int_seg_wf, 
not_wf, 
equal_wf, 
power-series_wf, 
crng_wf, 
nat_wf, 
deq_wf, 
valueall-type_wf, 
bag-member-partitions, 
bag-append-equal-bag-rep, 
decidable__equal_int, 
bag-size_wf, 
squash_wf, 
true_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_weakening_equal, 
subtype_base_sq, 
int_subtype_base, 
add-is-int-iff, 
decidable__lt, 
lelt_wf, 
and_wf, 
rng_times_zero, 
no-repeats-bag-partitions, 
bag-size-rep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
inlFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
instantiate, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
inrFormation, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}n  +  1].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].
        (f*g)[bag-rep(n;x)]  =  (*  f[bag-rep(k;x)]  g[bag-rep(n  -  k;x)]) 
        supposing  \mforall{}i:\mBbbN{}n  +  1.  ((\mneg{}(i  =  k))  {}\mRightarrow{}  (f[bag-rep(i;x)]  =  0)) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_54_53
Last ObjectModification:
2017_07_26-PM-06_32_34
Theory : power!series
Home
Index