Nuprl Lemma : bag-append-equal-bag-rep

[T:Type]. ∀[x:T]. ∀[n:ℕ]. ∀[a,b:bag(T)].
  uiff((a b) bag-rep(n;x) ∈ bag(T);(n (#(a) #(b)) ∈ ℤ)
  ∧ (a bag-rep(#(a);x) ∈ bag(T))
  ∧ (b bag-rep(#(b);x) ∈ bag(T)))


Proof




Definitions occuring in Statement :  bag-rep: bag-rep(n;x) bag-size: #(bs) bag-append: as bs bag: bag(T) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  nat: subtype_rel: A ⊆B prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] exists: x:A. B[x] sub-bag: sub-bag(T;as;bs) all: x:A. B[x] implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True squash: T sq_type: SQType(T) top: Top
Lemmas referenced :  nat_wf bag-size_wf list-subtype-bag bag-rep_wf bag-append_wf bag_wf equal_wf bag-size-rep bag-size-append sub-bag-of-bag-rep bag-append-comm iff_weakening_equal true_wf squash_wf int_subtype_base subtype_base_sq bag-rep-add
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity isect_memberEquality addEquality rename setElimination intEquality productEquality lambdaEquality independent_isectElimination because_Cache applyEquality hypothesisEquality cumulativity isectElimination extract_by_obid axiomEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule hypothesis independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyLambdaEquality Error :memTop,  dependent_pairFormation dependent_functionElimination independent_functionElimination baseClosed imageMemberEquality natural_numberEquality imageElimination hyp_replacement instantiate voidEquality voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}].  \mforall{}[a,b:bag(T)].
    uiff((a  +  b)  =  bag-rep(n;x);(n  =  (\#(a)  +  \#(b)))  \mwedge{}  (a  =  bag-rep(\#(a);x))  \mwedge{}  (b  =  bag-rep(\#(b);x)))



Date html generated: 2020_05_20-AM-08_02_03
Last ObjectModification: 2020_01_07-PM-02_18_08

Theory : bags


Home Index