Nuprl Lemma : sub-bag-of-bag-rep

[T:Type]. ∀x:T. ∀n:ℕ.  ∀[b:bag(T)]. bag-rep(#(b);x) ∈ bag(T) supposing sub-bag(T;b;bag-rep(n;x))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag-rep: bag-rep(n;x) bag-size: #(bs) bag: bag(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a single-valued-bag: single-valued-bag(b;T) implies:  Q subtype_rel: A ⊆B prop: nat: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} bag-rep: bag-rep(n;x) top: Top ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A and: P ∧ Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  iff_weakening_equal true_wf squash_wf sv-bag-only_wf int_formula_prop_less_lemma intformless_wf le_wf decidable__lt bag-member-sv-bag-only single-valued-bag-is-rep empty-bag_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermConstant_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties bag-size-zero primrec0_lemma int_subtype_base subtype_base_sq bag_wf sub-bag_wf nat_wf bag-size_wf decidable__equal_int bag-member_wf member-bag-rep list-subtype-bag bag-rep_wf sub-bag-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis applyEquality independent_isectElimination lambdaEquality sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination setElimination rename natural_numberEquality unionElimination isect_memberEquality axiomEquality universeEquality instantiate cumulativity intEquality independent_functionElimination voidElimination voidEquality dependent_pairFormation int_eqEquality independent_pairFormation computeAll setEquality imageElimination imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}n:\mBbbN{}.    \mforall{}[b:bag(T)].  b  =  bag-rep(\#(b);x)  supposing  sub-bag(T;b;bag-rep(n;x))



Date html generated: 2016_05_15-PM-02_46_28
Last ObjectModification: 2016_01_16-AM-08_44_01

Theory : bags


Home Index