Nuprl Lemma : sub-bag-member
∀[T:Type]. ∀[b1,b2:bag(T)]. ∀[x:T].  (x ↓∈ b2) supposing (sub-bag(T;b1;b2) and x ↓∈ b1)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
sub-bag: sub-bag(T;as;bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
sub-bag: sub-bag(T;as;bs)
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
, 
prop: ℙ
, 
squash: ↓T
, 
uimplies: b supposing a
, 
bag-member: x ↓∈ bs
Lemmas referenced : 
bag-member-append, 
bag-member_wf, 
sub-bag_wf, 
bag_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
inlFormation, 
cumulativity, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
universeEquality, 
isect_memberFormation, 
imageElimination, 
isect_memberEquality, 
equalityTransitivity
Latex:
\mforall{}[T:Type].  \mforall{}[b1,b2:bag(T)].  \mforall{}[x:T].    (x  \mdownarrow{}\mmember{}  b2)  supposing  (sub-bag(T;b1;b2)  and  x  \mdownarrow{}\mmember{}  b1)
Date html generated:
2016_10_25-AM-10_30_23
Last ObjectModification:
2016_07_12-AM-06_46_39
Theory : bags
Home
Index