Nuprl Lemma : member-bag-rep

[T:Type]. ∀[n:ℕ]. ∀[x,y:T].  x ∈ supposing y ↓∈ bag-rep(n;x)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-rep: bag-rep(n;x) nat: uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B bag-rep: bag-rep(n;x) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) primrec: primrec(n;b;c) empty-bag: {} nil: [] it: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff sq_or: a ↓∨ b squash: T bool: 𝔹 unit: Unit bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf bag-member_wf bag-rep_wf list-subtype-bag primrec-unroll bag-member-empty-iff empty-bag_wf nil_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity assert_wf bnot_wf not_wf equal-wf-base int_subtype_base iff_weakening_uiff assert_of_bnot bag-member-cons primrec_wf bag_wf le_wf cons-bag_wf int_seg_wf equal_wf bool_cases_sqequal assert-bnot neg_assert_of_eq_int nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality cumulativity because_Cache applyEquality equalityTransitivity equalitySymmetry productElimination unionElimination instantiate promote_hyp baseClosed impliesFunctionality dependent_set_memberEquality imageElimination equalityElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[x,y:T].    y  =  x  supposing  y  \mdownarrow{}\mmember{}  bag-rep(n;x)



Date html generated: 2017_10_01-AM-08_54_58
Last ObjectModification: 2017_07_26-PM-04_36_49

Theory : bags


Home Index