Nuprl Lemma : single-valued-bag-is-rep

[A:Type]. ∀[as:bag(A)].  ∀a:A. (a ↓∈ as  (as bag-rep(#(as);a) ∈ bag(A))) supposing single-valued-bag(as;A)


Proof




Definitions occuring in Statement :  single-valued-bag: single-valued-bag(b;T) bag-member: x ↓∈ bs bag-rep: bag-rep(n;x) bag-size: #(bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q squash: T exists: x:A. B[x] prop: bag-size: #(bs) subtype_rel: A ⊆B top: Top nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q single-valued-list: single-valued-list(L;T)
Lemmas referenced :  bag_to_squash_list bag-member_wf single-valued-bag_wf bag-member-sq-list-member single-valued-bag-list list_extensionality bag-rep_wf length_wf_nat bag-size-rep bag-size_wf list-subtype-bag nat_wf equal_wf squash_wf true_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf select-bag-rep lelt_wf length_wf iff_weakening_equal select_member less_than_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality cumulativity rename dependent_functionElimination independent_isectElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality setElimination equalityTransitivity natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll dependent_set_memberEquality imageMemberEquality baseClosed universeEquality independent_functionElimination axiomEquality

Latex:
\mforall{}[A:Type].  \mforall{}[as:bag(A)].
    \mforall{}a:A.  (a  \mdownarrow{}\mmember{}  as  {}\mRightarrow{}  (as  =  bag-rep(\#(as);a)))  supposing  single-valued-bag(as;A)



Date html generated: 2017_10_01-AM-08_55_35
Last ObjectModification: 2017_07_26-PM-04_37_44

Theory : bags


Home Index