Nuprl Lemma : single-valued-bag-list

[T:Type]. ∀[L:T List].  single-valued-list(L;T) supposing single-valued-bag(L;T)


Proof




Definitions occuring in Statement :  single-valued-bag: single-valued-bag(b;T) single-valued-list: single-valued-list(L;T) list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a single-valued-bag: single-valued-bag(b;T) single-valued-list: single-valued-list(L;T) all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B
Lemmas referenced :  list-member-bag-member l_member_wf single-valued-bag_wf list-subtype-bag list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality independent_functionElimination lemma_by_obid isectElimination because_Cache sqequalRule lambdaEquality axiomEquality applyEquality independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    single-valued-list(L;T)  supposing  single-valued-bag(L;T)



Date html generated: 2016_05_15-PM-02_42_58
Last ObjectModification: 2015_12_27-AM-09_39_15

Theory : bags


Home Index