Nuprl Lemma : select-bag-rep

[T:Type]. ∀[n:ℕ]. ∀[x:T]. ∀[i:ℕn].  (bag-rep(n;x)[i] x ∈ T)


Proof




Definitions occuring in Statement :  bag-rep: bag-rep(n;x) select: L[n] int_seg: {i..j-} nat: uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} uimplies: supposing a guard: {T} nat: ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: bag-size: #(bs) l_member: (x ∈ l) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) cand: c∧ B
Lemmas referenced :  member-bag-rep select_wf bag-rep_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf bag-size-rep decidable__lt intformless_wf int_formula_prop_less_lemma list-member-bag-member int_seg_subtype_nat false_wf less_than_wf length_wf equal_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality cumulativity hypothesis setElimination rename independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination applyEquality lambdaFormation productEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:T].  \mforall{}[i:\mBbbN{}n].    (bag-rep(n;x)[i]  =  x)



Date html generated: 2017_10_01-AM-08_55_02
Last ObjectModification: 2017_07_26-PM-04_36_54

Theory : bags


Home Index