Nuprl Lemma : bag-member-sq-list-member

[T:Type]. ∀L:T List. ∀x:T.  ↓(x ∈ L) supposing x ↓∈ L


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] squash: T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] uimplies: supposing a subtype_rel: A ⊆B prop: so_apply: x[s] implies:  Q empty-bag: {} uiff: uiff(P;Q) and: P ∧ Q false: False squash: T cons-bag: x.b sq_or: a ↓∨ b or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q guard: {T}
Lemmas referenced :  equal_wf cons_wf cons_member bag-member-cons nil_wf bag-member-empty-iff list_wf l_member_wf squash_wf list-subtype-bag bag-member_wf isect_wf all_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache applyEquality independent_isectElimination hypothesis independent_functionElimination productElimination voidElimination imageElimination imageMemberEquality baseClosed voidEquality rename unionElimination dependent_functionElimination inlFormation isect_memberEquality equalityTransitivity equalitySymmetry universeEquality inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    \mdownarrow{}(x  \mmember{}  L)  supposing  x  \mdownarrow{}\mmember{}  L



Date html generated: 2016_05_15-PM-02_39_50
Last ObjectModification: 2016_01_16-AM-08_48_29

Theory : bags


Home Index