Nuprl Lemma : bag-member-sq-list-member
∀[T:Type]. ∀L:T List. ∀x:T.  ↓(x ∈ L) supposing x ↓∈ L
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
empty-bag: {}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
false: False
, 
squash: ↓T
, 
cons-bag: x.b
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
equal_wf, 
cons_wf, 
cons_member, 
bag-member-cons, 
nil_wf, 
bag-member-empty-iff, 
list_wf, 
l_member_wf, 
squash_wf, 
list-subtype-bag, 
bag-member_wf, 
isect_wf, 
all_wf, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
productElimination, 
voidElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
voidEquality, 
rename, 
unionElimination, 
dependent_functionElimination, 
inlFormation, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    \mdownarrow{}(x  \mmember{}  L)  supposing  x  \mdownarrow{}\mmember{}  L
Date html generated:
2016_05_15-PM-02_39_50
Last ObjectModification:
2016_01_16-AM-08_48_29
Theory : bags
Home
Index