Nuprl Lemma : bag-summation-single-non-zero-no-repeats
∀[T,R:Type]. ∀[eq:EqDecider(T)]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f:T ⟶ R].
  ∀z:T
    (Σ(x∈b). f[x] = f[z] ∈ R) supposing 
       ((bag-no-repeats(T;b) ∧ z ↓∈ b) and 
       (∀x:T. (x ↓∈ b 
⇒ ((x = z ∈ T) ∨ (f[x] = zero ∈ R))))) 
  supposing IsMonoid(R;add;zero) ∧ Comm(R;add)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
comm: Comm(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
deq: EqDecider(T)
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
bag-member: x ↓∈ bs
, 
or: P ∨ Q
, 
monoid_p: IsMonoid(T;op;id)
, 
eqof: eqof(d)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
bag-summation-single-non-zero, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
bag-extensionality-no-repeats, 
decidable-equal-deq, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
single-bag_wf, 
bag-single-no-repeats, 
bag-member-single, 
bag-member_wf, 
bag-summation-single, 
bag-summation_wf, 
bag-no-repeats_wf, 
all_wf, 
or_wf, 
monoid_p_wf, 
comm_wf, 
bag_wf, 
deq_wf, 
bag-filter-no-repeats, 
bag-member-filter, 
safe-assert-deq, 
and_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionExtensionality, 
cumulativity, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
setEquality, 
independent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[T,R:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  R].
    \mforall{}z:T
        (\mSigma{}(x\mmember{}b).  f[x]  =  f[z])  supposing 
              ((bag-no-repeats(T;b)  \mwedge{}  z  \mdownarrow{}\mmember{}  b)  and 
              (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  ((x  =  z)  \mvee{}  (f[x]  =  zero))))) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)
Date html generated:
2017_10_01-AM-09_01_57
Last ObjectModification:
2017_07_26-PM-04_43_16
Theory : bags
Home
Index