Nuprl Lemma : bag-summation-single-non-zero

[T,R:Type]. ∀[eq:EqDecider(T)]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f:T ⟶ R].
  ∀z:T. Σ(x∈b). f[x] = Σ(x∈[x∈b|eq z]). f[x] ∈ supposing ∀x:T. (x ↓∈  ((x z ∈ T) ∨ (f[x] zero ∈ R))) 
  supposing IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-summation: Σ(x∈b). f[x] bag-filter: [x∈b|p[x]] bag: bag(T) deq: EqDecider(T) comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q so_lambda: λ2x.t[x] deq: EqDecider(T) so_apply: x[s] cand: c∧ B prop: implies:  Q or: P ∨ Q monoid_p: IsMonoid(T;op;id) uiff: uiff(P;Q) not: ¬A false: False eqof: eqof(d) iff: ⇐⇒ Q rev_implies:  Q guard: {T} ident: Ident(T;op;id)
Lemmas referenced :  bag-summation-split equal_wf infix_ap_wf bag-summation_wf assert_wf bag-filter_wf bag-member_wf istype-universe monoid_p_wf comm_wf bag_wf deq_wf bag-summation-is-zero bnot_wf bag-member-filter-set eqof_wf not_wf istype-void iff_transitivity iff_weakening_uiff assert_of_bnot safe-assert-deq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality promote_hyp lambdaFormation_alt productElimination sqequalRule lambdaEquality_alt applyEquality setElimination rename because_Cache inhabitedIsType independent_isectElimination independent_pairFormation equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity setEquality setIsType universeIsType functionIsType unionIsType equalityIsType1 dependent_functionElimination isect_memberEquality_alt axiomEquality functionIsTypeImplies productIsType universeEquality independent_functionElimination unionElimination voidElimination

Latex:
\mforall{}[T,R:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  R].
    \mforall{}z:T
        \mSigma{}(x\mmember{}b).  f[x]  =  \mSigma{}(x\mmember{}[x\mmember{}b|eq  x  z]).  f[x]  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  ((x  =  z)  \mvee{}  (f[x]  =  zero))) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2019_10_15-AM-11_03_29
Last ObjectModification: 2018_10_09-PM-00_13_42

Theory : bags


Home Index