Nuprl Lemma : bag-summation-split

[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[p:T ⟶ 𝔹]. ∀[f:T ⟶ R].
  Σ(x∈b). f[x] (x∈[x∈b|p[x]]). f[x] add Σ(x∈[x∈b|¬bp[x]]). f[x]) ∈ supposing IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag-filter: [x∈b|p[x]] bag: bag(T) comm: Comm(T;op) bnot: ¬bb bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q so_apply: x[s] cand: c∧ B prop: so_lambda: λ2x.t[x] all: x:A. B[x] uimplies: supposing a true: True subtype_rel: A ⊆B squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q monoid_p: IsMonoid(T;op;id)
Lemmas referenced :  bag-filter-split infix_ap_wf bag-summation_wf assert_wf bag-filter_wf bnot_wf bag-summation-append subtype_rel_bag monoid_p_wf comm_wf bool_wf bag_wf equal_wf squash_wf true_wf assoc_wf iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality because_Cache productElimination applyEquality functionExtensionality independent_pairFormation hypothesis cumulativity setEquality sqequalRule lambdaEquality lambdaFormation setElimination rename equalityTransitivity equalitySymmetry independent_isectElimination natural_numberEquality productEquality functionEquality universeEquality isect_memberFormation isect_memberEquality axiomEquality imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T,R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:T  {}\mrightarrow{}  R].
    \mSigma{}(x\mmember{}b).  f[x]  =  (\mSigma{}(x\mmember{}[x\mmember{}b|p[x]]).  f[x]  add  \mSigma{}(x\mmember{}[x\mmember{}b|\mneg{}\msubb{}p[x]]).  f[x]) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-08_51_16
Last ObjectModification: 2017_07_26-PM-04_33_14

Theory : bags


Home Index