Step
*
3
of Lemma
fps-mul-coeff-bag-rep-simple
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : ℕ
5. k : ℕn + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. ∀i:ℕn + 1. ((¬(i = k ∈ ℤ))
⇒ (f[bag-rep(i;x)] = 0 ∈ |r|))
11. bag-no-repeats(bag(X) × bag(X);bag-partitions(eq;bag-rep(n;x)))
⊢ <bag-rep(k;x), bag-rep(n - k;x)> ↓∈ bag-partitions(eq;bag-rep(n;x))
BY
{ (BagMemberD 0 THEN Auto)⋅ }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : ℕ
5. k : ℕn + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. ∀i:ℕn + 1. ((¬(i = k ∈ ℤ))
⇒ (f[bag-rep(i;x)] = 0 ∈ |r|))
11. bag-no-repeats(bag(X) × bag(X);bag-partitions(eq;bag-rep(n;x)))
⊢ (bag-rep(k;x) + bag-rep(n - k;x)) = bag-rep(n;x) ∈ bag(X)
Latex:
Latex:
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : \mBbbN{}
5. k : \mBbbN{}n + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. \mforall{}i:\mBbbN{}n + 1. ((\mneg{}(i = k)) {}\mRightarrow{} (f[bag-rep(i;x)] = 0))
11. bag-no-repeats(bag(X) \mtimes{} bag(X);bag-partitions(eq;bag-rep(n;x)))
\mvdash{} <bag-rep(k;x), bag-rep(n - k;x)> \mdownarrow{}\mmember{} bag-partitions(eq;bag-rep(n;x))
By
Latex:
(BagMemberD 0 THEN Auto)\mcdot{}
Home
Index