Step
*
4
of Lemma
fps-mul-coeff-bag-rep-simple
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : ℕ
5. k : ℕn + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. ∀i:ℕn + 1. ((¬(i = k ∈ ℤ))
⇒ (f[bag-rep(i;x)] = 0 ∈ |r|))
11. Σ(x∈bag-partitions(eq;bag-rep(n;x))). * f[fst(x)] g[snd(x)]
= (* f[fst(<bag-rep(k;x), bag-rep(n - k;x)>)] g[snd(<bag-rep(k;x), bag-rep(n - k;x)>)])
∈ |r|
⊢ Σ(p∈bag-partitions(eq;bag-rep(n;x))). * (f (fst(p))) (g (snd(p))) = (* (f bag-rep(k;x)) (g bag-rep(n - k;x))) ∈ |r|
BY
{ xxx(RepUR ``fps-coeff`` -1 THEN Auto)xxx }
Latex:
Latex:
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. n : \mBbbN{}
5. k : \mBbbN{}n + 1
6. r : CRng
7. f : PowerSeries(X;r)
8. g : PowerSeries(X;r)
9. x : X
10. \mforall{}i:\mBbbN{}n + 1. ((\mneg{}(i = k)) {}\mRightarrow{} (f[bag-rep(i;x)] = 0))
11. \mSigma{}(x\mmember{}bag-partitions(eq;bag-rep(n;x))). * f[fst(x)] g[snd(x)]
= (* f[fst(<bag-rep(k;x), bag-rep(n - k;x)>)] g[snd(<bag-rep(k;x), bag-rep(n - k;x)>)])
\mvdash{} \mSigma{}(p\mmember{}bag-partitions(eq;bag-rep(n;x))). * (f (fst(p))) (g (snd(p)))
= (* (f bag-rep(k;x)) (g bag-rep(n - k;x)))
By
Latex:
xxx(RepUR ``fps-coeff`` -1 THEN Auto)xxx
Home
Index