Step
*
1
of Lemma
int-moebius-inversion
1. f : ℕ+ ⟶ ℤ
2. g : ℕ+ ⟶ ℤ
3. ∀n:ℕ+. (f[n] = Σ i|n. g[i] ∈ ℤ)
4. n : ℕ+
5. g[n] = Σ i|n. f[i] * int-to-ring(ℤ-rng;int-moebius(n ÷ i)) ∈ |ℤ-rng|
⊢ g[n] = Σ i|n. f[i] * int-moebius(n ÷ i) ∈ ℤ
BY
{ xxx(Reduce (-1) THEN HypSubst' (-1) 0 THEN EqCD THEN Auto)xxx }
Latex:
Latex:
1. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
2. g : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. \mforall{}n:\mBbbN{}\msupplus{}. (f[n] = \mSigma{} i|n. g[i] )
4. n : \mBbbN{}\msupplus{}
5. g[n] = \mSigma{} i|n. f[i] * int-to-ring(\mBbbZ{}-rng;int-moebius(n \mdiv{} i))
\mvdash{} g[n] = \mSigma{} i|n. f[i] * int-moebius(n \mdiv{} i)
By
Latex:
xxx(Reduce (-1) THEN HypSubst' (-1) 0 THEN EqCD THEN Auto)xxx
Home
Index