Nuprl Lemma : int-moebius-inversion

[f,g:ℕ+ ⟶ ℤ].  ∀n:ℕ+(g[n] = Σ i|n. f[i] int-moebius(n ÷ i)  ∈ ℤsupposing ∀n:ℕ+(f[n] = Σ i|n. g[i]  ∈ ℤ)


Proof




Definitions occuring in Statement :  int-moebius: int-moebius(n) divisors-sum: Σ i|n. f[i]  nat_plus: + uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] divide: n ÷ m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B integ_dom: IntegDom{i} int_ring: -rng rng_car: |r| pi1: fst(t) squash: T prop: crng: CRng rng: Rng so_apply: x[s] so_lambda: λ2x.t[x] nat_plus: + int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) true: True guard: {T} nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top rng_times: * pi2: snd(t) infix_ap: y sq_type: SQType(T)
Lemmas referenced :  int-moebius-inversion-general int_ring_wf integ_dom_wf equal_wf squash_wf true_wf rng_car_wf gen-divisors-sum-int-ring decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf int_seg_wf iff_weakening_equal divisors-sum_wf infix_ap_wf rng_times_wf int-to-ring_wf int-moebius_wf int_seg_properties nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base int_subtype_base div-positive-1 nat_plus_wf all_wf subtype_base_sq int-to-ring-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality setElimination rename hypothesisEquality sqequalRule functionExtensionality because_Cache independent_isectElimination imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination addEquality imageMemberEquality baseClosed intEquality functionEquality divideEquality dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll axiomEquality instantiate cumulativity multiplyEquality

Latex:
\mforall{}[f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}n:\mBbbN{}\msupplus{}.  (g[n]  =  \mSigma{}  i|n.  f[i]  *  int-moebius(n  \mdiv{}  i)  )  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (f[n]  =  \mSigma{}  i|n.  g[i]  )



Date html generated: 2018_05_21-PM-09_57_06
Last ObjectModification: 2017_07_26-PM-06_33_11

Theory : power!series


Home Index