Nuprl Lemma : int-moebius-inversion
∀[f,g:ℕ+ ⟶ ℤ].  ∀n:ℕ+. (g[n] = Σ i|n. f[i] * int-moebius(n ÷ i)  ∈ ℤ) supposing ∀n:ℕ+. (f[n] = Σ i|n. g[i]  ∈ ℤ)
Proof
Definitions occuring in Statement : 
int-moebius: int-moebius(n)
, 
divisors-sum: Σ i|n. f[i] 
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
integ_dom: IntegDom{i}
, 
int_ring: ℤ-rng
, 
rng_car: |r|
, 
pi1: fst(t)
, 
squash: ↓T
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
rng_times: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
sq_type: SQType(T)
Lemmas referenced : 
int-moebius-inversion-general, 
int_ring_wf, 
integ_dom_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
gen-divisors-sum-int-ring, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
int_seg_wf, 
iff_weakening_equal, 
divisors-sum_wf, 
infix_ap_wf, 
rng_times_wf, 
int-to-ring_wf, 
int-moebius_wf, 
int_seg_properties, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
div-positive-1, 
nat_plus_wf, 
all_wf, 
subtype_base_sq, 
int-to-ring-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
addEquality, 
imageMemberEquality, 
baseClosed, 
intEquality, 
functionEquality, 
divideEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
axiomEquality, 
instantiate, 
cumulativity, 
multiplyEquality
Latex:
\mforall{}[f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}n:\mBbbN{}\msupplus{}.  (g[n]  =  \mSigma{}  i|n.  f[i]  *  int-moebius(n  \mdiv{}  i)  )  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (f[n]  =  \mSigma{}  i|n.  g[i]  )
Date html generated:
2018_05_21-PM-09_57_06
Last ObjectModification:
2017_07_26-PM-06_33_11
Theory : power!series
Home
Index