Nuprl Lemma : int-moebius_wf

[n:ℕ+]. (int-moebius(n) ∈ ℤ)


Proof




Definitions occuring in Statement :  int-moebius: int-moebius(n) nat_plus: + uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-moebius: int-moebius(n) subtype_rel: A ⊆B uimplies: supposing a Prime: Prime so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s]
Lemmas referenced :  bag-moebius_wf Prime_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 int_upper_wf prime_wf le_wf strong-subtype-self factors_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality intEquality independent_isectElimination natural_numberEquality lambdaEquality setElimination rename hypothesisEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (int-moebius(n)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-09_50_34
Last ObjectModification: 2015_12_27-PM-04_39_03

Theory : power!series


Home Index