Nuprl Lemma : bag-moebius_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[b:bag(T)].  (bag-moebius(eq;b) ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-moebius: bag-moebius(eq;b) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-moebius: bag-moebius(eq;b) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B true: True nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) guard: {T} false: False prop: bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag-has-no-repeats_wf bool_wf eqtt_to_assert eq_int_wf bag-size_wf subtype_base_sq int_subtype_base equal-wf-base true_wf uiff_transitivity equal-wf-T-base assert_wf assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf bag_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination remainderEquality applyEquality natural_numberEquality addLevel instantiate intEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed independent_pairFormation impliesFunctionality minusEquality axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[b:bag(T)].    (bag-moebius(eq;b)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-09_53_39
Last ObjectModification: 2017_07_26-PM-06_32_22

Theory : bags_2


Home Index