Nuprl Lemma : bag-moebius_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[b:bag(T)].  (bag-moebius(eq;b) ∈ ℤ)
Proof
Definitions occuring in Statement : 
bag-moebius: bag-moebius(eq;b)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-moebius: bag-moebius(eq;b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bag-has-no-repeats_wf, 
bool_wf, 
eqtt_to_assert, 
eq_int_wf, 
bag-size_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
assert_of_eq_int, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
bag_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
remainderEquality, 
applyEquality, 
natural_numberEquality, 
addLevel, 
instantiate, 
intEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
independent_pairFormation, 
impliesFunctionality, 
minusEquality, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[b:bag(T)].    (bag-moebius(eq;b)  \mmember{}  \mBbbZ{})
Date html generated:
2018_05_21-PM-09_53_39
Last ObjectModification:
2017_07_26-PM-06_32_22
Theory : bags_2
Home
Index