Nuprl Lemma : int-moebius-inversion-general

[r:CRng]. ∀[f,g:ℕ+ ⟶ |r|].
  ∀n:ℕ+(g[n] = Σ i|n. f[i] int-to-ring(r;int-moebius(n ÷ i)) ∈ |r|) supposing ∀n:ℕ+(f[n] = Σ i|n. g[i] ∈ |r|)


Proof




Definitions occuring in Statement :  int-moebius: int-moebius(n) gen-divisors-sum: Σ i|n. f[i] nat_plus: + uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] divide: n ÷ m equal: t ∈ T int-to-ring: int-to-ring(r;n) crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B Prime: Prime so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] nat_plus: + prop: crng: CRng rng: Rng int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) lelt: i ≤ j < k top: Top le: A ≤ B less_than': less_than'(a;b) true: True squash: T cand: c∧ B guard: {T} sub-bags: sub-bags(eq;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] let: let gen-divisors-sum: Σ i|n. f[i] bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j int-bag-product: Π(b) bag-product: Πx ∈ b. f[x] label: ...$L... t satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] infix_ap: y int-moebius: int-moebius(n) pi2: snd(t) nequal: a ≠ b ∈ 
Lemmas referenced :  int-deq_wf strong-subtype-deq-subtype Prime_wf strong-subtype-set3 int_upper_wf prime_wf le_wf strong-subtype-self bag-moebius-inversion set-valueall-type int-valueall-type int-bag-product_wf subtype_rel_bag bag-product-primes less_than_wf bag_wf factors_wf nat_plus_wf all_wf equal_wf rng_car_wf gen-divisors-sum_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel int_seg_wf crng_wf squash_wf true_wf bag-summation_wf rng_plus_wf rng_zero_wf sub-bags_wf rng_all_properties rng_plus_comm2 iff_weakening_equal bag-summation-map bag-partitions_wf bag-summation-partitions-primes-general product-factors nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_constant_lemma rng_times_wf int-to-ring_wf bag-moebius_wf infix_ap_wf pi1_wf_top rng_wf deq_wf factors-prime-product pi2_wf int-moebius_wf div-positive-1 int_seg_properties intformle_wf int_formula_prop_le_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid hypothesis applyEquality sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination natural_numberEquality sqequalRule lambdaEquality setElimination rename hypothesisEquality because_Cache equalityTransitivity equalitySymmetry functionExtensionality dependent_set_memberEquality dependent_functionElimination axiomEquality unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination isect_memberEquality voidEquality addEquality functionEquality imageElimination universeEquality imageMemberEquality baseClosed hyp_replacement dependent_pairFormation int_eqEquality computeAll productEquality independent_pairEquality divideEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  |r|].
    \mforall{}n:\mBbbN{}\msupplus{}.  (g[n]  =  \mSigma{}  i|n.  f[i]  *  int-to-ring(r;int-moebius(n  \mdiv{}  i))) 
    supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (f[n]  =  \mSigma{}  i|n.  g[i])



Date html generated: 2018_05_21-PM-09_57_03
Last ObjectModification: 2017_07_26-PM-06_33_10

Theory : power!series


Home Index