Nuprl Lemma : gen-divisors-sum_wf

[r:CRng]. ∀[n:ℕ+]. ∀[f:ℕ+1 ⟶ |r|].  (Σ i|n. f[i] ∈ |r|)


Proof




Definitions occuring in Statement :  gen-divisors-sum: Σ i|n. f[i] int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T gen-divisors-sum: Σ i|n. f[i] nat_plus: + subtype_rel: A ⊆B and: P ∧ Q prop: uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k crng: CRng rng: Rng so_lambda: λ2x.t[x] nequal: a ≠ b ∈  guard: {T} not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) so_apply: x[s] bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b cand: c∧ B
Lemmas referenced :  from-upto_wf list-subtype-bag le_wf less_than_wf int_seg_wf bag-summation_wf rng_car_wf rng_plus_wf rng_zero_wf eq_int_wf int_seg_properties nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base int_subtype_base bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rng_all_properties rng_plus_comm2 nat_plus_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename because_Cache hypothesis applyEquality setEquality intEquality productEquality hypothesisEquality independent_isectElimination lambdaEquality sqequalRule remainderEquality productElimination lambdaFormation dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed unionElimination equalityElimination functionExtensionality equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination axiomEquality functionEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}\msupplus{}n  +  1  {}\mrightarrow{}  |r|].    (\mSigma{}  i|n.  f[i]  \mmember{}  |r|)



Date html generated: 2018_05_21-PM-07_31_32
Last ObjectModification: 2017_07_26-PM-05_06_46

Theory : general


Home Index