Nuprl Lemma : bag-moebius-inversion

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:bag(X) ⟶ |r|].
    ∀b:bag(X). ((g b) = Σ(p∈bag-partitions(eq;b)). (f (fst(p))) int-to-ring(r;bag-moebius(eq;snd(p))) ∈ |r|) 
    supposing ∀b:bag(X). ((f b) = Σ(s∈sub-bags(eq;b)). s ∈ |r|) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  bag-moebius: bag-moebius(eq;b) sub-bags: sub-bags(eq;bs) bag-partitions: bag-partitions(eq;bs) bag-summation: Σ(x∈b). f[x] bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y pi1: fst(t) pi2: snd(t) all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T int-to-ring: int-to-ring(r;n) crng: CRng rng_times: * rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  power-series: PowerSeries(X;r) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] prop: so_lambda: λ2x.t[x] crng: CRng rng: Rng so_apply: x[s] and: P ∧ Q cand: c∧ B fps-mul: (f*g) fps-coeff: f[b] squash: T pi1: fst(t) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q sub-bags: sub-bags(eq;bs) top: Top infix_ap: y fps-moebius: fps-moebius(eq;r) has-value: (a)↓ pi2: snd(t)
Lemmas referenced :  fps-moebius-inversion bag_wf all_wf equal_wf rng_car_wf bag-summation_wf rng_plus_wf rng_zero_wf sub-bags_wf rng_all_properties rng_plus_comm2 crng_wf deq_wf valueall-type_wf squash_wf true_wf rng_times_wf rng_one_wf bag-partitions_wf iff_weakening_equal bag-summation-map bag-subtype-list assoc_wf comm_wf rng_times_one fps-coeff_wf power-series_wf value-type-has-value int-value-type bag-moebius_wf pi2_wf int-to-ring_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation hypothesis isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation cumulativity lambdaEquality dependent_functionElimination axiomEquality because_Cache setElimination rename applyEquality functionExtensionality productElimination independent_pairFormation functionEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality imageElimination productEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination voidElimination voidEquality hyp_replacement callbyvalueReduce intEquality independent_pairEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:bag(X)  {}\mrightarrow{}  |r|].
        \mforall{}b:bag(X)
            ((g  b)  =  \mSigma{}(p\mmember{}bag-partitions(eq;b)).  (f  (fst(p)))  *  int-to-ring(r;bag-moebius(eq;snd(p)))) 
        supposing  \mforall{}b:bag(X).  ((f  b)  =  \mSigma{}(s\mmember{}sub-bags(eq;b)).  g  s) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_56_58
Last ObjectModification: 2017_07_26-PM-06_33_09

Theory : power!series


Home Index