Nuprl Lemma : bag-moebius-inversion
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:bag(X) ⟶ |r|].
    ∀b:bag(X). ((g b) = Σ(p∈bag-partitions(eq;b)). (f (fst(p))) * int-to-ring(r;bag-moebius(eq;snd(p))) ∈ |r|) 
    supposing ∀b:bag(X). ((f b) = Σ(s∈sub-bags(eq;b)). g s ∈ |r|) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
bag-moebius: bag-moebius(eq;b)
, 
sub-bags: sub-bags(eq;bs)
, 
bag-partitions: bag-partitions(eq;bs)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
int-to-ring: int-to-ring(r;n)
, 
crng: CRng
, 
rng_times: *
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
power-series: PowerSeries(X;r)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
crng: CRng
, 
rng: Rng
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
fps-mul: (f*g)
, 
fps-coeff: f[b]
, 
squash: ↓T
, 
pi1: fst(t)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
sub-bags: sub-bags(eq;bs)
, 
top: Top
, 
infix_ap: x f y
, 
fps-moebius: fps-moebius(eq;r)
, 
has-value: (a)↓
, 
pi2: snd(t)
Lemmas referenced : 
fps-moebius-inversion, 
bag_wf, 
all_wf, 
equal_wf, 
rng_car_wf, 
bag-summation_wf, 
rng_plus_wf, 
rng_zero_wf, 
sub-bags_wf, 
rng_all_properties, 
rng_plus_comm2, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
squash_wf, 
true_wf, 
rng_times_wf, 
rng_one_wf, 
bag-partitions_wf, 
iff_weakening_equal, 
bag-summation-map, 
bag-subtype-list, 
assoc_wf, 
comm_wf, 
rng_times_one, 
fps-coeff_wf, 
power-series_wf, 
value-type-has-value, 
int-value-type, 
bag-moebius_wf, 
pi2_wf, 
int-to-ring_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
cumulativity, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
productElimination, 
independent_pairFormation, 
functionEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageElimination, 
productEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
hyp_replacement, 
callbyvalueReduce, 
intEquality, 
independent_pairEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:bag(X)  {}\mrightarrow{}  |r|].
        \mforall{}b:bag(X)
            ((g  b)  =  \mSigma{}(p\mmember{}bag-partitions(eq;b)).  (f  (fst(p)))  *  int-to-ring(r;bag-moebius(eq;snd(p)))) 
        supposing  \mforall{}b:bag(X).  ((f  b)  =  \mSigma{}(s\mmember{}sub-bags(eq;b)).  g  s) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_56_58
Last ObjectModification:
2017_07_26-PM-06_33_09
Theory : power!series
Home
Index