Nuprl Lemma : fps-moebius-inversion
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].
    g = (f*fps-moebius(eq;r)) ∈ PowerSeries(X;r) supposing f = (g*λb.1) ∈ PowerSeries(X;r) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-moebius: fps-moebius(eq;r)
, 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
power-series: PowerSeries(X;r)
, 
crng: CRng
, 
rng: Rng
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
fps-coeff: f[b]
Lemmas referenced : 
fps-moebius-eq, 
equal_wf, 
power-series_wf, 
fps-mul_wf, 
rng_one_wf, 
bag_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
squash_wf, 
true_wf, 
fps-mul-assoc, 
iff_weakening_equal, 
fps-one_wf, 
fps-div-property, 
rng_car_wf, 
rng_times_one, 
mul_one_fps
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
cumulativity, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].
        g  =  (f*fps-moebius(eq;r))  supposing  f  =  (g*\mlambda{}b.1) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_56_52
Last ObjectModification:
2017_07_26-PM-06_33_07
Theory : power!series
Home
Index