Nuprl Lemma : fps-moebius-inversion

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].
    (f*fps-moebius(eq;r)) ∈ PowerSeries(X;r) supposing (g*λb.1) ∈ PowerSeries(X;r) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-moebius: fps-moebius(eq;r) fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T crng: CRng rng_one: 1
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: power-series: PowerSeries(X;r) crng: CRng rng: Rng squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q fps-coeff: f[b]
Lemmas referenced :  fps-moebius-eq equal_wf power-series_wf fps-mul_wf rng_one_wf bag_wf crng_wf deq_wf valueall-type_wf squash_wf true_wf fps-mul-assoc iff_weakening_equal fps-one_wf fps-div-property rng_car_wf rng_times_one mul_one_fps
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination cumulativity because_Cache sqequalRule lambdaEquality setElimination rename isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality hyp_replacement applyLambdaEquality applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].
        g  =  (f*fps-moebius(eq;r))  supposing  f  =  (g*\mlambda{}b.1) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_56_52
Last ObjectModification: 2017_07_26-PM-06_33_07

Theory : power!series


Home Index