Nuprl Lemma : fps-moebius-eq
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  (fps-moebius(eq;r) = (1÷λb.1) ∈ PowerSeries(X;r)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-moebius: fps-moebius(eq;r), 
fps-div: (f÷g), 
fps-one: 1, 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fps-div: (f÷g), 
fps-moebius: fps-moebius(eq;r), 
power-series: PowerSeries(X;r), 
has-value: (a)↓, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b), 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
crng: CRng, 
rng: Rng, 
pi1: fst(t), 
pi2: snd(t), 
cand: A c∧ B, 
infix_ap: x f y, 
true: True, 
fps-one: 1, 
fps-coeff: f[b], 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
bag-filter: [x∈b|p[x]], 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
bag-partitions: bag-partitions(eq;bs), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bag-splits: bag-splits(b), 
empty-bag: {}, 
nil: [], 
single-bag: {x}, 
cons: [a / b], 
bag-to-set: bag-to-set(eq;bs), 
bag-remove-repeats: bag-remove-repeats(eq;bs), 
list-to-set: list-to-set(eq;L), 
l-union: as ⋃ bs, 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
bag-null: bag-null(bs), 
null: null(as), 
assoc: Assoc(T;op), 
comm: Comm(T;op), 
integ_dom: IntegDom{i}, 
int_ring: ℤ-rng, 
rng_car: |r|, 
rng_zero: 0, 
rng_plus: +r, 
less_than: a < b
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
bag-moebius_wf, 
bag_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
bag-size_wf, 
subtract-1-ge-0, 
nat_wf, 
add_nat_wf, 
istype-false, 
le_wf, 
decidable__le, 
add-is-int-iff, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
decidable__lt, 
rng_car_wf, 
rng_one_wf, 
fps-coeff_wf, 
fps-one_wf, 
rng_minus_wf, 
bag-summation_wf, 
assert_wf, 
bnot_wf, 
bag-null_wf, 
rng_plus_wf, 
rng_zero_wf, 
pi1_wf_top, 
infix_ap_wf, 
rng_times_wf, 
fps-div-coeff_wf, 
bag-filter_wf, 
bag-partitions_wf, 
crng_all_properties, 
rng_plus_comm2, 
int-to-ring_wf, 
equal_wf, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_one, 
rng_plus_comm, 
iff_weakening_equal, 
bag-moebius-property, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
iff_weakening_uiff, 
equal-wf-T-base, 
ifthenelse_wf, 
empty-bag_wf, 
int-to-ring-one, 
bag-summation-empty, 
squash_wf, 
true_wf, 
rng_minus_zero, 
subtype_rel_self, 
rng_plus_zero, 
decidable__equal_int, 
subtype_rel_product, 
top_wf, 
pi2_wf, 
int-to-ring-minus, 
assoc_wf, 
comm_wf, 
bag-summation-hom, 
int_ring_wf, 
int-to-ring-hom, 
bag-settype, 
subtract_wf, 
bag-member_wf, 
bag-member-filter, 
bag-member-partitions, 
bag-size-append, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
null-bag-size, 
eq_int_wf, 
not_wf, 
equal-wf-base, 
iff_transitivity, 
assert_of_bnot, 
assert_of_eq_int, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeEquality, 
lambdaFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
independent_pairFormation, 
functionIsTypeImplies, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
productElimination, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
addEquality, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseClosed, 
equalityIsType1, 
setEquality, 
productEquality, 
independent_pairEquality, 
productIsType, 
setIsType, 
imageElimination, 
imageMemberEquality, 
equalityElimination, 
equalityIsType3, 
baseApply, 
closedConclusion, 
instantiate, 
cumulativity, 
equalityIsType4, 
hyp_replacement, 
minusEquality, 
functionIsType
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    (fps-moebius(eq;r)  =  (1\mdiv{}\mlambda{}b.1))  supposing  valueall-type(X)
Date html generated:
2019_10_16-AM-11_34_39
Last ObjectModification:
2018_10_16-AM-09_34_31
Theory : power!series
Home
Index