Nuprl Lemma : fps-moebius-eq

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  (fps-moebius(eq;r) (1÷λb.1) ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-moebius: fps-moebius(eq;r) fps-div: (f÷g) fps-one: 1 power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T crng: CRng rng_one: 1
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-div: (f÷g) fps-moebius: fps-moebius(eq;r) power-series: PowerSeries(X;r) has-value: (a)↓ all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} le: A ≤ B subtype_rel: A ⊆B fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b) less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) crng: CRng rng: Rng pi1: fst(t) pi2: snd(t) cand: c∧ B infix_ap: y true: True fps-one: 1 fps-coeff: f[b] squash: T iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b bag-filter: [x∈b|p[x]] filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind bag-partitions: bag-partitions(eq;bs) callbyvalueall: callbyvalueall evalall: evalall(t) bag-splits: bag-splits(b) empty-bag: {} nil: [] single-bag: {x} cons: [a b] bag-to-set: bag-to-set(eq;bs) bag-remove-repeats: bag-remove-repeats(eq;bs) list-to-set: list-to-set(eq;L) l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L bag-null: bag-null(bs) null: null(as) assoc: Assoc(T;op) comm: Comm(T;op) integ_dom: IntegDom{i} int_ring: -rng rng_car: |r| rng_zero: 0 rng_plus: +r less_than: a < b
Lemmas referenced :  value-type-has-value int-value-type bag-moebius_wf bag_wf crng_wf deq_wf valueall-type_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf bag-size_wf subtract-1-ge-0 nat_wf add_nat_wf istype-false le_wf decidable__le add-is-int-iff set_subtype_base int_subtype_base intformnot_wf itermAdd_wf intformeq_wf int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf decidable__lt rng_car_wf rng_one_wf fps-coeff_wf fps-one_wf rng_minus_wf bag-summation_wf assert_wf bnot_wf bag-null_wf rng_plus_wf rng_zero_wf pi1_wf_top infix_ap_wf rng_times_wf fps-div-coeff_wf bag-filter_wf bag-partitions_wf crng_all_properties rng_plus_comm2 int-to-ring_wf equal_wf rng_times_over_plus rng_times_over_minus rng_times_one rng_plus_comm iff_weakening_equal bag-moebius-property eqtt_to_assert assert-bag-null eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff equal-wf-T-base ifthenelse_wf empty-bag_wf int-to-ring-one bag-summation-empty squash_wf true_wf rng_minus_zero subtype_rel_self rng_plus_zero decidable__equal_int subtype_rel_product top_wf pi2_wf int-to-ring-minus assoc_wf comm_wf bag-summation-hom int_ring_wf int-to-ring-hom bag-settype subtract_wf bag-member_wf bag-member-filter bag-member-partitions bag-size-append itermSubtract_wf int_term_value_subtract_lemma null-bag-size eq_int_wf not_wf equal-wf-base iff_transitivity assert_of_bnot assert_of_eq_int set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeEquality lambdaFormation_alt setElimination rename intWeakElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality dependent_functionElimination voidElimination independent_pairFormation functionIsTypeImplies equalityTransitivity equalitySymmetry applyLambdaEquality productElimination applyEquality because_Cache dependent_set_memberEquality_alt addEquality unionElimination pointwiseFunctionality promote_hyp baseClosed equalityIsType1 setEquality productEquality independent_pairEquality productIsType setIsType imageElimination imageMemberEquality equalityElimination equalityIsType3 baseApply closedConclusion instantiate cumulativity equalityIsType4 hyp_replacement minusEquality functionIsType

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    (fps-moebius(eq;r)  =  (1\mdiv{}\mlambda{}b.1))  supposing  valueall-type(X)



Date html generated: 2019_10_16-AM-11_34_39
Last ObjectModification: 2018_10_16-AM-09_34_31

Theory : power!series


Home Index