Nuprl Lemma : int-to-ring-minus

[r:Rng]. ∀[y:ℤ].  (int-to-ring(r;-y) (-r int-to-ring(r;y)) ∈ |r|)


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) rng: Rng rng_minus: -r rng_car: |r| uall: [x:A]. B[x] apply: a minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top squash: T prop: rng: Rng infix_ap: y true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  int-to-ring-add rng_wf int-to-ring-zero minus-one-mul add-mul-special zero-mul equal_wf squash_wf true_wf rng_car_wf rng_plus_wf rng_minus_wf int-to-ring_wf infix_ap_wf iff_weakening_equal rng_plus_ac_1 rng_plus_comm rng_plus_inv rng_plus_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality minusEquality hypothesis intEquality sqequalRule isect_memberEquality axiomEquality because_Cache voidElimination voidEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality setElimination rename natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination multiplyEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[y:\mBbbZ{}].    (int-to-ring(r;-y)  =  (-r  int-to-ring(r;y)))



Date html generated: 2017_10_01-AM-08_19_14
Last ObjectModification: 2017_02_28-PM-02_03_48

Theory : rings_1


Home Index