Nuprl Lemma : int-to-ring-minus
∀[r:Rng]. ∀[y:ℤ].  (int-to-ring(r;-y) = (-r int-to-ring(r;y)) ∈ |r|)
Proof
Definitions occuring in Statement : 
int-to-ring: int-to-ring(r;n)
, 
rng: Rng
, 
rng_minus: -r
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
minus: -n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
rng: Rng
, 
infix_ap: x f y
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
int-to-ring-add, 
rng_wf, 
int-to-ring-zero, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_minus_wf, 
int-to-ring_wf, 
infix_ap_wf, 
iff_weakening_equal, 
rng_plus_ac_1, 
rng_plus_comm, 
rng_plus_inv, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
minusEquality, 
hypothesis, 
intEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
multiplyEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[y:\mBbbZ{}].    (int-to-ring(r;-y)  =  (-r  int-to-ring(r;y)))
Date html generated:
2017_10_01-AM-08_19_14
Last ObjectModification:
2017_02_28-PM-02_03_48
Theory : rings_1
Home
Index