Nuprl Lemma : int-to-ring-minus
∀[r:Rng]. ∀[y:ℤ].  (int-to-ring(r;-y) = (-r int-to-ring(r;y)) ∈ |r|)
Proof
Definitions occuring in Statement : 
int-to-ring: int-to-ring(r;n), 
rng: Rng, 
rng_minus: -r, 
rng_car: |r|, 
uall: ∀[x:A]. B[x], 
apply: f a, 
minus: -n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
squash: ↓T, 
prop: ℙ, 
rng: Rng, 
infix_ap: x f y, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
int-to-ring-add, 
rng_wf, 
int-to-ring-zero, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_minus_wf, 
int-to-ring_wf, 
infix_ap_wf, 
iff_weakening_equal, 
rng_plus_ac_1, 
rng_plus_comm, 
rng_plus_inv, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
minusEquality, 
hypothesis, 
intEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
multiplyEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[y:\mBbbZ{}].    (int-to-ring(r;-y)  =  (-r  int-to-ring(r;y)))
Date html generated:
2017_10_01-AM-08_19_14
Last ObjectModification:
2017_02_28-PM-02_03_48
Theory : rings_1
Home
Index