Nuprl Lemma : int-to-ring-add

[r:Rng]. ∀[a1,a2:ℤ].  (int-to-ring(r;a1 a2) (int-to-ring(r;a1) +r int-to-ring(r;a2)) ∈ |r|)


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) rng: Rng rng_plus: +r rng_car: |r| uall: [x:A]. B[x] infix_ap: y add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} squash: T prop: rng: Rng top: Top infix_ap: y true: True subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q int-to-ring: int-to-ring(r;n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) nat: le: A ≤ B less_than': less_than'(a;b) ge: i ≥  less_than: a < b subtract: m
Lemmas referenced :  rng_wf decidable__equal_int subtype_base_sq int_subtype_base equal_wf squash_wf true_wf rng_car_wf int-to-ring-zero rng_zero_wf rng_plus_wf int-to-ring-minus-one rng_one_wf subtype_rel_self iff_weakening_equal rng_plus_inv lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf full-omega-unsat intformand_wf intformless_wf itermAdd_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf intformeq_wf int_formula_prop_eq_lemma rng_nat_op_add decidable__le intformle_wf int_formula_prop_le_lemma le_wf false_wf infix_ap_wf rng_nat_op_wf rng_nat_op_one itermMinus_wf int_term_value_minus_lemma rng_minus_wf rng_minus_over_plus rng_plus_assoc rng_plus_comm rng_plus_inv_assoc decidable__lt subtract_wf subtract-add-cancel int-to-ring_wf rng_plus_zero nat_properties ge_wf absval_wf itermSubtract_wf int_term_value_subtract_lemma nat_wf add_nat_wf add-is-int-iff absval_unfold top_wf add-associates add-swap add-commutes zero-add rng_plus_ac_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis intEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache extract_by_obid lambdaFormation dependent_functionElimination minusEquality natural_numberEquality unionElimination instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality lambdaEquality imageElimination universeEquality setElimination rename voidElimination voidEquality imageMemberEquality baseClosed productElimination addEquality equalityElimination dependent_pairFormation promote_hyp approximateComputation int_eqEquality independent_pairFormation dependent_set_memberEquality equalityUniverse levelHypothesis hyp_replacement applyLambdaEquality intWeakElimination pointwiseFunctionality baseApply closedConclusion lessCases sqequalAxiom

Latex:
\mforall{}[r:Rng].  \mforall{}[a1,a2:\mBbbZ{}].    (int-to-ring(r;a1  +  a2)  =  (int-to-ring(r;a1)  +r  int-to-ring(r;a2)))



Date html generated: 2018_05_21-PM-03_14_58
Last ObjectModification: 2018_05_19-AM-08_08_28

Theory : rings_1


Home Index