Nuprl Lemma : int-to-ring-minus-one
∀[r:Rng]. (int-to-ring(r;-1) = (-r 1) ∈ |r|)
Proof
Definitions occuring in Statement : 
int-to-ring: int-to-ring(r;n), 
rng: Rng, 
rng_one: 1, 
rng_minus: -r, 
rng_car: |r|, 
uall: ∀[x:A]. B[x], 
apply: f a, 
minus: -n, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
int-to-ring: int-to-ring(r;n), 
lt_int: i <z j, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
rng_nat_op: n ⋅r e, 
mon_nat_op: n ⋅ e, 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
grp_id: e, 
nat_op: n x(op;id) e, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
subtract: n - m, 
uall: ∀[x:A]. B[x], 
bfalse: ff, 
member: t ∈ T, 
squash: ↓T, 
rng: Rng, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
infix_ap: x f y
Lemmas referenced : 
equal_wf, 
rng_car_wf, 
rng_minus_over_plus, 
rng_zero_wf, 
rng_one_wf, 
rng_minus_wf, 
iff_weakening_equal, 
rng_plus_wf, 
rng_minus_zero, 
rng_plus_zero, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
cut, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
universeIsType
Latex:
\mforall{}[r:Rng].  (int-to-ring(r;-1)  =  (-r  1))
Date html generated:
2020_05_19-PM-10_07_58
Last ObjectModification:
2020_01_08-PM-06_00_23
Theory : rings_1
Home
Index