Nuprl Lemma : bag-summation-hom
∀[r,s:Rng]. ∀[f:|r| ⟶ |s|].
  ∀[A:Type]. ∀[g:A ⟶ |r|]. ∀[b:bag(A)].  (Σ(x∈b). f[g[x]] = f[Σ(x∈b). g[x]] ∈ |s|) supposing rng_hom_p(r;s;f)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_hom_p: rng_hom_p(r;s;f)
, 
rng: Rng
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
monoid_p: IsMonoid(T;op;id)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
empty-bag: {}
, 
top: Top
, 
all: ∀x:A. B[x]
, 
cons-bag: x.b
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rng_hom_p: rng_hom_p(r;s;f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
infix_ap: x f y
Lemmas referenced : 
rng_all_properties, 
bag_to_squash_list, 
list_induction, 
equal_wf, 
rng_car_wf, 
bag-summation_wf, 
rng_plus_wf, 
rng_zero_wf, 
list-subtype-bag, 
rng_plus_comm2, 
list_wf, 
bag-summation-empty, 
bag_wf, 
rng_hom_p_wf, 
rng_wf, 
squash_wf, 
true_wf, 
bag-summation-cons, 
iff_weakening_equal, 
rng_hom_zero, 
infix_ap_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
because_Cache, 
promote_hyp, 
imageElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
setElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
equalityTransitivity, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[r,s:Rng].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].
    \mforall{}[A:Type].  \mforall{}[g:A  {}\mrightarrow{}  |r|].  \mforall{}[b:bag(A)].    (\mSigma{}(x\mmember{}b).  f[g[x]]  =  f[\mSigma{}(x\mmember{}b).  g[x]]) 
    supposing  rng\_hom\_p(r;s;f)
Date html generated:
2017_10_01-AM-08_51_28
Last ObjectModification:
2017_07_26-PM-04_33_19
Theory : bags
Home
Index