Nuprl Lemma : bag-summation-hom

[r,s:Rng]. ∀[f:|r| ⟶ |s|].
  ∀[A:Type]. ∀[g:A ⟶ |r|]. ∀[b:bag(A)].  (x∈b). f[g[x]] f[Σ(x∈b). g[x]] ∈ |s|) supposing rng_hom_p(r;s;f)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng_hom_p: rng_hom_p(r;s;f) rng: Rng rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q monoid_p: IsMonoid(T;op;id) squash: T exists: x:A. B[x] so_lambda: λ2x.t[x] rng: Rng so_apply: x[s] subtype_rel: A ⊆B cand: c∧ B implies:  Q empty-bag: {} top: Top all: x:A. B[x] cons-bag: x.b prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q rng_hom_p: rng_hom_p(r;s;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) infix_ap: y
Lemmas referenced :  rng_all_properties bag_to_squash_list list_induction equal_wf rng_car_wf bag-summation_wf rng_plus_wf rng_zero_wf list-subtype-bag rng_plus_comm2 list_wf bag-summation-empty bag_wf rng_hom_p_wf rng_wf squash_wf true_wf bag-summation-cons iff_weakening_equal rng_hom_zero infix_ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis because_Cache promote_hyp imageElimination rename sqequalRule lambdaEquality setElimination cumulativity applyEquality functionExtensionality independent_isectElimination independent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation dependent_functionElimination hyp_replacement equalitySymmetry applyLambdaEquality axiomEquality functionEquality universeEquality equalityTransitivity equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[r,s:Rng].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].
    \mforall{}[A:Type].  \mforall{}[g:A  {}\mrightarrow{}  |r|].  \mforall{}[b:bag(A)].    (\mSigma{}(x\mmember{}b).  f[g[x]]  =  f[\mSigma{}(x\mmember{}b).  g[x]]) 
    supposing  rng\_hom\_p(r;s;f)



Date html generated: 2017_10_01-AM-08_51_28
Last ObjectModification: 2017_07_26-PM-04_33_19

Theory : bags


Home Index