Nuprl Lemma : rng_hom_zero
∀[r,s:Rng]. ∀[f:|r| ⟶ |s|].  f[0] = 0 ∈ |s| supposing rng_hom_p(r;s;f)
Proof
Definitions occuring in Statement : 
rng_hom_p: rng_hom_p(r;s;f)
, 
rng: Rng
, 
rng_zero: 0
, 
rng_car: |r|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
rng_hom_p: rng_hom_p(r;s;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
rng: Rng
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
infix_ap: x f y
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
rng_plus_zero, 
rng_zero_wf, 
iff_weakening_equal, 
fun_thru_2op_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_times_wf, 
rng_one_wf, 
rng_wf, 
rng_minus_wf, 
infix_ap_wf, 
rng_plus_comm, 
rng_plus_ac_1, 
rng_plus_inv
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
productEquality, 
functionExtensionality, 
isect_memberEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[r,s:Rng].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].    f[0]  =  0  supposing  rng\_hom\_p(r;s;f)
Date html generated:
2017_10_01-AM-08_18_19
Last ObjectModification:
2017_02_28-PM-02_03_14
Theory : rings_1
Home
Index