Nuprl Lemma : rng_hom_zero

[r,s:Rng]. ∀[f:|r| ⟶ |s|].  f[0] 0 ∈ |s| supposing rng_hom_p(r;s;f)


Proof




Definitions occuring in Statement :  rng_hom_p: rng_hom_p(r;s;f) rng: Rng rng_zero: 0 rng_car: |r| uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] rng_hom_p: rng_hom_p(r;s;f) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q squash: T prop: rng: Rng true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) infix_ap: y rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf rng_plus_zero rng_zero_wf iff_weakening_equal fun_thru_2op_wf rng_car_wf rng_plus_wf rng_times_wf rng_one_wf rng_wf rng_minus_wf infix_ap_wf rng_plus_comm rng_plus_ac_1 rng_plus_inv
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache setElimination rename natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination productEquality functionExtensionality isect_memberEquality axiomEquality functionEquality

Latex:
\mforall{}[r,s:Rng].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].    f[0]  =  0  supposing  rng\_hom\_p(r;s;f)



Date html generated: 2017_10_01-AM-08_18_19
Last ObjectModification: 2017_02_28-PM-02_03_14

Theory : rings_1


Home Index