Nuprl Lemma : int-to-ring-int

[x:ℤ]. (int-to-ring(ℤ-rng;x) x ∈ ℤ)


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) int_ring: -rng uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  int-to-ring: int-to-ring(r;n) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  int_ring: -rng rng_minus: -r pi2: snd(t) pi1: fst(t) rng_one: 1 nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int rng_nat_op-int decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMinus_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_set_memberEquality because_Cache dependent_functionElimination minusEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp instantiate independent_functionElimination

Latex:
\mforall{}[x:\mBbbZ{}].  (int-to-ring(\mBbbZ{}-rng;x)  =  x)



Date html generated: 2017_10_01-AM-08_19_00
Last ObjectModification: 2017_02_28-PM-02_03_50

Theory : rings_1


Home Index