Step
*
2
1
1
of Lemma
open-expectation-monotone
1. p : FinProbSpace
2. n : ℤ
3. 0 < n
4. ∀m:ℕ. (((n - 1) ≤ m)
⇒ (∀C:p-open(p). (E(n - 1;λs.(C <n - 1, s>)) ≤ E(m;λs.(C <m, s>)))))
5. m : ℕ
6. n ≤ m
7. C : p-open(p)
8. ¬(n = 0 ∈ ℤ)
9. ¬(m = 0 ∈ ℤ)
10. x : ℕ||p||
⊢ ((λx.E(n - 1;rv-shift(x;λs.(C <n, s>)))) x) ≤ ((λx.E(m - 1;rv-shift(x;λs.(C <m, s>)))) x)
BY
{ xxx(RepUR ``rv-shift`` 0 THEN (InstHyp [⌜m - 1⌝;⌜λp.(C <(fst(p)) + 1, cons-seq(x;snd(p))>)⌝] 4⋅ THENA Auto))xxx }
1
.....wf.....
1. p : FinProbSpace
2. n : ℤ
3. 0 < n
4. ∀m:ℕ. (((n - 1) ≤ m)
⇒ (∀C:p-open(p). (E(n - 1;λs.(C <n - 1, s>)) ≤ E(m;λs.(C <m, s>)))))
5. m : ℕ
6. n ≤ m
7. C : p-open(p)
8. ¬(n = 0 ∈ ℤ)
9. ¬(m = 0 ∈ ℤ)
10. x : ℕ||p||
⊢ λp.(C <(fst(p)) + 1, cons-seq(x;snd(p))>) ∈ p-open(p)
2
1. p : FinProbSpace
2. n : ℤ
3. 0 < n
4. ∀m:ℕ. (((n - 1) ≤ m)
⇒ (∀C:p-open(p). (E(n - 1;λs.(C <n - 1, s>)) ≤ E(m;λs.(C <m, s>)))))
5. m : ℕ
6. n ≤ m
7. C : p-open(p)
8. ¬(n = 0 ∈ ℤ)
9. ¬(m = 0 ∈ ℤ)
10. x : ℕ||p||
11. E(n - 1;λs.((λp.(C <(fst(p)) + 1, cons-seq(x;snd(p))>)) <n - 1, s>)) ≤ E(m - 1;λs.((λp.(C <(fst(p)) + 1, cons-seq(x;\000Csnd(p))>)) <m - 1, s>))
⊢ E(n - 1;λs.(C <n, cons-seq(x;s)>)) ≤ E(m - 1;λs.(C <m, cons-seq(x;s)>))
Latex:
Latex:
1. p : FinProbSpace
2. n : \mBbbZ{}
3. 0 < n
4. \mforall{}m:\mBbbN{}. (((n - 1) \mleq{} m) {}\mRightarrow{} (\mforall{}C:p-open(p). (E(n - 1;\mlambda{}s.(C <n - 1, s>)) \mleq{} E(m;\mlambda{}s.(C <m, s>)))))
5. m : \mBbbN{}
6. n \mleq{} m
7. C : p-open(p)
8. \mneg{}(n = 0)
9. \mneg{}(m = 0)
10. x : \mBbbN{}||p||
\mvdash{} ((\mlambda{}x.E(n - 1;rv-shift(x;\mlambda{}s.(C <n, s>)))) x) \mleq{} ((\mlambda{}x.E(m - 1;rv-shift(x;\mlambda{}s.(C <m, s>)))) x)
By
Latex:
xxx(RepUR ``rv-shift`` 0
THEN (InstHyp [\mkleeneopen{}m - 1\mkleeneclose{};\mkleeneopen{}\mlambda{}p.(C <(fst(p)) + 1, cons-seq(x;snd(p))>)\mkleeneclose{}] 4\mcdot{} THENA Auto)
)xxx
Home
Index