Nuprl Lemma : open-expectation-monotone
∀[p:FinProbSpace]. ∀[n,m:ℕ].  ∀[C:p-open(p)]. (E(n;λs.(C <n, s>)) ≤ E(m;λs.(C <m, s>))) supposing n ≤ m
Proof
Definitions occuring in Statement : 
p-open: p-open(p)
, 
expectation: E(n;F)
, 
finite-prob-space: FinProbSpace
, 
qle: r ≤ s
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
apply: f a
, 
lambda: λx.A[x]
, 
pair: <a, b>
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
random-variable: RandomVariable(p;n)
, 
p-open: p-open(p)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
finite-prob-space: FinProbSpace
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
p-outcome: Outcome
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
expectation: E(n;F)
, 
ycomb: Y
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than': less_than'(a;b)
, 
rv-le: X ≤ Y
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than: a < b
, 
nequal: a ≠ b ∈ T 
, 
int_upper: {i...}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
rv-shift: rv-shift(x;X)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cons-seq: cons-seq(x;s)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
qle_witness, 
expectation_wf, 
p-open_wf, 
le_wf, 
int_seg_properties, 
length_wf, 
rationals_wf, 
int_seg_wf, 
p-outcome_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
finite-prob-space_wf, 
expectation-constant, 
false_wf, 
null-seq_wf, 
expectation-monotone, 
qle_wf, 
qle-int, 
subtype_base_sq, 
int_subtype_base, 
sq_stable__le, 
subtype_rel_dep_function, 
int_seg_subtype, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
lelt_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
natural_number_wf_p-outcome, 
int_upper_subtype_nat, 
nequal-le-implies, 
zero-add, 
decidable__lt, 
eq_int_wf, 
equal-wf-base, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
uiff_transitivity, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
ws-monotone, 
rv-shift_wf, 
less_than_transitivity1, 
sq_stable_from_decidable, 
int-subtype-rationals, 
decidable__qle, 
l_all_iff, 
l_member_wf, 
pi1_wf_top, 
add_nat_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
cons-seq_wf, 
int_seg_subtype_nat, 
subtype_rel_self, 
neg_assert_of_eq_int, 
int_upper_properties, 
all_wf, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
because_Cache, 
dependent_set_memberEquality, 
applyEquality, 
dependent_pairEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
productElimination, 
functionEquality, 
unionElimination, 
hyp_replacement, 
instantiate, 
cumulativity, 
productEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityElimination, 
promote_hyp, 
hypothesis_subsumption, 
baseApply, 
closedConclusion, 
impliesFunctionality, 
setEquality, 
addEquality, 
independent_pairEquality, 
pointwiseFunctionality
Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    \mforall{}[C:p-open(p)].  (E(n;\mlambda{}s.(C  <n,  s>))  \mleq{}  E(m;\mlambda{}s.(C  <m,  s>)))  supposing  n  \000C\mleq{}  m
Date html generated:
2018_05_22-AM-00_36_13
Last ObjectModification:
2017_07_26-PM-07_00_24
Theory : randomness
Home
Index