Nuprl Lemma : open-expectation-monotone

[p:FinProbSpace]. ∀[n,m:ℕ].  ∀[C:p-open(p)]. (E(n;λs.(C <n, s>)) ≤ E(m;λs.(C <m, s>))) supposing n ≤ m


Proof




Definitions occuring in Statement :  p-open: p-open(p) expectation: E(n;F) finite-prob-space: FinProbSpace qle: r ≤ s nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a lambda: λx.A[x] pair: <a, b>
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: random-variable: RandomVariable(p;n) p-open: p-open(p) subtype_rel: A ⊆B guard: {T} finite-prob-space: FinProbSpace int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B p-outcome: Outcome decidable: Dec(P) or: P ∨ Q expectation: E(n;F) ycomb: Y eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt less_than': less_than'(a;b) rv-le: X ≤ Y uiff: uiff(P;Q) sq_type: SQType(T) so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T bool: 𝔹 unit: Unit it: bfalse: ff bnot: ¬bb assert: b less_than: a < b nequal: a ≠ b ∈  int_upper: {i...} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + rv-shift: rv-shift(x;X) pi1: fst(t) pi2: snd(t) cons-seq: cons-seq(x;s)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf qle_witness expectation_wf p-open_wf le_wf int_seg_properties length_wf rationals_wf int_seg_wf p-outcome_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf finite-prob-space_wf expectation-constant false_wf null-seq_wf expectation-monotone qle_wf qle-int subtype_base_sq int_subtype_base sq_stable__le subtype_rel_dep_function int_seg_subtype decidable__equal_int intformeq_wf int_formula_prop_eq_lemma lelt_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot natural_number_wf_p-outcome int_upper_subtype_nat nequal-le-implies zero-add decidable__lt eq_int_wf equal-wf-base assert_wf bnot_wf not_wf equal-wf-T-base uiff_transitivity assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot ws-monotone rv-shift_wf less_than_transitivity1 sq_stable_from_decidable int-subtype-rationals decidable__qle l_all_iff l_member_wf pi1_wf_top add_nat_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma cons-seq_wf int_seg_subtype_nat subtype_rel_self neg_assert_of_eq_int int_upper_properties all_wf subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination because_Cache dependent_set_memberEquality applyEquality dependent_pairEquality functionExtensionality equalityTransitivity equalitySymmetry applyLambdaEquality productElimination functionEquality unionElimination hyp_replacement instantiate cumulativity productEquality imageMemberEquality baseClosed imageElimination equalityElimination promote_hyp hypothesis_subsumption baseApply closedConclusion impliesFunctionality setEquality addEquality independent_pairEquality pointwiseFunctionality

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    \mforall{}[C:p-open(p)].  (E(n;\mlambda{}s.(C  <n,  s>))  \mleq{}  E(m;\mlambda{}s.(C  <m,  s>)))  supposing  n  \000C\mleq{}  m



Date html generated: 2018_05_22-AM-00_36_13
Last ObjectModification: 2017_07_26-PM-07_00_24

Theory : randomness


Home Index