Nuprl Lemma : qle_witness

[r,s:ℚ].  ((r ≤ s)  (Ax ∈ r ≤ s))


Proof




Definitions occuring in Statement :  qle: r ≤ s rationals: uall: [x:A]. B[x] implies:  Q member: t ∈ T axiom: Ax
Definitions unfolded in proof :  qle: r ≤ s uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) grp_leq: a ≤ b infix_ap: y
Lemmas referenced :  grp_leq_wf qadd_grp_wf2 ocgrp_wf rationals_wf assert_witness grp_le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin applyEquality lambdaEquality setElimination rename hypothesisEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache isect_memberEquality independent_functionElimination

Latex:
\mforall{}[r,s:\mBbbQ{}].    ((r  \mleq{}  s)  {}\mRightarrow{}  (Ax  \mmember{}  r  \mleq{}  s))



Date html generated: 2016_05_15-PM-10_45_24
Last ObjectModification: 2015_12_27-PM-07_53_40

Theory : rationals


Home Index