Nuprl Lemma : grp_leq_wf
∀[g:GrpSig]. ∀[a,b:|g|]. (a ≤ b ∈ ℙ)
Proof
Definitions occuring in Statement :
grp_leq: a ≤ b
,
grp_car: |g|
,
grp_sig: GrpSig
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
grp_leq: a ≤ b
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
infix_ap: x f y
Lemmas referenced :
assert_wf,
grp_le_wf,
grp_car_wf,
grp_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[g:GrpSig]. \mforall{}[a,b:|g|]. (a \mleq{} b \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-00_11_42
Last ObjectModification:
2015_12_26-PM-11_43_28
Theory : groups_1
Home
Index