Nuprl Lemma : grp_leq_wf

[g:GrpSig]. ∀[a,b:|g|].  (a ≤ b ∈ ℙ)


Proof




Definitions occuring in Statement :  grp_leq: a ≤ b grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  grp_leq: a ≤ b uall: [x:A]. B[x] member: t ∈ T infix_ap: y
Lemmas referenced :  assert_wf grp_le_wf grp_car_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[g:GrpSig].  \mforall{}[a,b:|g|].    (a  \mleq{}  b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_11_42
Last ObjectModification: 2015_12_26-PM-11_43_28

Theory : groups_1


Home Index