Nuprl Lemma : natural_number_wf_p-outcome

[p:FinProbSpace]. (0 ∈ Outcome)


Proof




Definitions occuring in Statement :  p-outcome: Outcome finite-prob-space: FinProbSpace uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: finite-prob-space: FinProbSpace all: x:A. B[x] or: P ∨ Q select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uiff: uiff(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y ifthenelse: if then else fi  lt_int: i <j bfalse: ff grp_id: e pi1: fst(t) pi2: snd(t) add_grp_of_rng: r↓+gp rng_zero: 0 qrng: <ℚ+*> btrue: tt eq_int: (i =z j) assert: b cons: [a b] guard: {T} nat: decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B true: True p-outcome: Outcome int_seg: {i..j-}
Lemmas referenced :  false_wf rationals_wf list-cases length_of_nil_lemma stuck-spread base_wf assert-qeq product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf lelt_wf length_wf finite-prob-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule lambdaFormation hypothesis extract_by_obid natural_numberEquality sqequalHypSubstitution setElimination thin rename isectElimination dependent_functionElimination hypothesisEquality unionElimination baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality productElimination equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption addEquality independent_functionElimination applyEquality lambdaEquality intEquality because_Cache minusEquality dependent_set_memberEquality axiomEquality

Latex:
\mforall{}[p:FinProbSpace].  (0  \mmember{}  Outcome)



Date html generated: 2018_05_22-AM-00_33_30
Last ObjectModification: 2017_07_26-PM-06_59_45

Theory : randomness


Home Index