Nuprl Lemma : qle-int

[x,y:ℤ].  uiff(x ≤ y;x ≤ y)


Proof




Definitions occuring in Statement :  qle: r ≤ s uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qle: r ≤ s grp_leq: a ≤ b qadd_grp: <ℚ+> grp_le: b pi2: snd(t) pi1: fst(t) infix_ap: y q_le: q_le(r;s) qsub: s uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) subtype_rel: A ⊆B top: Top ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B prop: implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce qmul-elim int-subtype-rationals qadd-elim isint-int istype-void qpositive-elim qeq-elim le_witness_for_triv qle_wf qle_witness le_wf istype-int decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf intformor_wf intformless_wf itermConstant_wf itermAdd_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_or_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf less_than_wf int_subtype_base decidable__or equal-wf-base decidable__lt decidable__equal_int assert_wf bor_wf lt_int_wf eq_int_wf or_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_lt_int assert_of_eq_int assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality callbyvalueReduce because_Cache minusEquality natural_numberEquality applyEquality isect_memberEquality_alt voidElimination multiplyEquality isintReduceTrue addEquality productElimination independent_pairEquality universeIsType equalityTransitivity equalitySymmetry independent_functionElimination inhabitedIsType independent_pairFormation dependent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality unionIsType equalityIsType4 baseApply closedConclusion baseClosed rename lambdaFormation_alt inlFormation_alt inrFormation_alt promote_hyp

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  \mleq{}  y;x  \mleq{}  y)



Date html generated: 2019_10_16-PM-00_31_14
Last ObjectModification: 2018_10_10-PM-06_22_59

Theory : rationals


Home Index