Nuprl Lemma : qeq-elim

[r,s:ℚ].
  (qeq(r;s) if isint(r)
  then if isint(s) then (r =z s) else let i,j in (r =z i) fi 
  else let p,q 
       in if isint(s) then (p =z q) else let i,j in (p =z q) fi 
  fi )


Proof




Definitions occuring in Statement :  rationals: qeq: qeq(r;s) ifthenelse: if then else fi  eq_int: (i =z j) bfalse: ff btrue: tt uall: [x:A]. B[x] isint: isint def spread: spread def multiply: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qeq: qeq(r;s) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce because_Cache sqequalAxiom isect_memberEquality

Latex:
\mforall{}[r,s:\mBbbQ{}].
    (qeq(r;s)  \msim{}  if  isint(r)
    then  if  isint(s)  then  (r  =\msubz{}  s)  else  let  i,j  =  s  in  (r  *  j  =\msubz{}  i)  fi 
    else  let  p,q  =  r 
              in  if  isint(s)  then  (p  =\msubz{}  s  *  q)  else  let  i,j  =  s  in  (p  *  j  =\msubz{}  i  *  q)  fi 
    fi  )



Date html generated: 2016_05_15-PM-10_39_48
Last ObjectModification: 2015_12_27-PM-07_58_48

Theory : rationals


Home Index