Nuprl Lemma : rationals-valueall-type

valueall-type(ℚ)


Proof




Definitions occuring in Statement :  rationals: valueall-type: valueall-type(T)
Definitions unfolded in proof :  rationals: uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] int_nzero: -o
Lemmas referenced :  quotient-valueall-type b-union_wf int_nzero_wf equal_wf bool_wf qeq_wf btrue_wf qeq-equiv bunion-valueall-type int-valueall-type product-valueall-type set-valueall-type nequal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality productEquality hypothesis lambdaEquality hypothesisEquality independent_isectElimination because_Cache independent_functionElimination lambdaFormation natural_numberEquality

Latex:
valueall-type(\mBbbQ{})



Date html generated: 2016_05_15-PM-10_37_11
Last ObjectModification: 2015_12_27-PM-08_00_41

Theory : rationals


Home Index