Nuprl Lemma : rationals-valueall-type
valueall-type(ℚ)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
valueall-type: valueall-type(T)
Definitions unfolded in proof : 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
Lemmas referenced : 
quotient-valueall-type, 
b-union_wf, 
int_nzero_wf, 
equal_wf, 
bool_wf, 
qeq_wf, 
btrue_wf, 
qeq-equiv, 
bunion-valueall-type, 
int-valueall-type, 
product-valueall-type, 
set-valueall-type, 
nequal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
productEquality, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
lambdaFormation, 
natural_numberEquality
Latex:
valueall-type(\mBbbQ{})
Date html generated:
2016_05_15-PM-10_37_11
Last ObjectModification:
2015_12_27-PM-08_00_41
Theory : rationals
Home
Index