Nuprl Lemma : quotient-valueall-type
∀[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].  (valueall-type(a,b:A//E[a;b])) supposing (valueall-type(A) and EquivRel(A;a,b.E[a;b]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
quotient: x,y:A//B[x; y], 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
valueall-type: valueall-type(T), 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
has-value: (a)↓, 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_apply: x[s1;s2], 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
guard: {T}, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sq_stable__has-value, 
bool_wf, 
has-value_wf_base, 
is-exception_wf, 
sqle_wf_base, 
equal_wf, 
equal-wf-base, 
quotient_wf, 
base_wf, 
valueall-type_wf, 
equiv_rel_wf, 
isect2_wf, 
isect2_subtype_rel, 
subtype_rel_functionality_wrt_iff, 
quotient-isect-base, 
ext-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lambdaFormation, 
pointwiseFunctionality, 
callbyvalueReduce, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
applyEquality, 
divergentSqle, 
sqleReflexivity, 
dependent_functionElimination, 
imageMemberEquality, 
imageElimination, 
cumulativity, 
lambdaEquality, 
functionExtensionality, 
independent_isectElimination, 
axiomSqleEquality, 
functionEquality, 
universeEquality, 
productElimination
Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (valueall-type(a,b:A//E[a;b]))  supposing  (valueall-type(A)  and  EquivRel(A;a,b.E[a;b]))
Date html generated:
2017_04_14-AM-07_39_38
Last ObjectModification:
2017_02_27-PM-03_11_22
Theory : quot_1
Home
Index