Nuprl Lemma : qadd-elim

[r,s:ℚ].
  (r if isint(r)
  then if isint(s) then else let i,j in <(r j) i, j> fi 
  else let p,q 
       in if isint(s) then <(s q), q> else let i,j in <(p j) (i q), j> fi 
  fi )


Proof




Definitions occuring in Statement :  qadd: s rationals: ifthenelse: if then else fi  bfalse: ff btrue: tt uall: [x:A]. B[x] isint: isint def spread: spread def pair: <a, b> multiply: m add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qadd: s uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce because_Cache sqequalAxiom isect_memberEquality

Latex:
\mforall{}[r,s:\mBbbQ{}].
    (r  +  s  \msim{}  if  isint(r)
    then  if  isint(s)  then  r  +  s  else  let  i,j  =  s  in  <(r  *  j)  +  i,  j>  fi 
    else  let  p,q  =  r 
              in  if  isint(s)  then  <p  +  (s  *  q),  q>  else  let  i,j  =  s  in  <(p  *  j)  +  (i  *  q),  q  *  j>  fi 
    fi  )



Date html generated: 2016_05_15-PM-10_39_42
Last ObjectModification: 2015_12_27-PM-07_58_53

Theory : rationals


Home Index